Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Biomedical titanium alloys and their additive manufacturing

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys. A brief review on the development of the β-type titanium alloys with high strength and low elastic modulus is given, and the use of additive manufacturing technologies to produce porous titanium alloy parts, using Ti–6Al–4V as a reference, and its potential in fabricating biomedical replacements are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Long M, Rack H. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.

    Article  Google Scholar 

  2. Liu Y, Zhao X, Zhang LC, Habibi D, Xie Z. Architectural design of diamond-like carbon coatings for long-lasting joint replacements. Mater Sci Eng C. 2013;33(5):2788.

    Article  Google Scholar 

  3. Geetha M, Singh A, Asokamani R, Gogia A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.

    Article  Google Scholar 

  4. Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2012;20(4):407.

    Google Scholar 

  5. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. 2007;89(4):780.

    Article  Google Scholar 

  6. Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention—a review. Recent Patents Corrosion Sci. 2010;2:40.

    Article  Google Scholar 

  7. Thomas KA, Kay JF, Cook SD, Jarcho M. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res. 1987;21(12):1395.

    Article  Google Scholar 

  8. Fox SC, Moriarty JD, Kusy RP. The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol. 1990;61(8):485.

    Article  Google Scholar 

  9. Pearce A, Richards R, Milz S, Schneider E, Pearce S. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13(1):1.

    Google Scholar 

  10. Biemond J, Hannink G, Verdonschot N, Buma P. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating. J Mater Sci Mater Med. 2013;24(3):745.

    Article  Google Scholar 

  11. De Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, Kruse Gujer A, Grätz KW, Weber FE. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A. 2013;19(23–24):2645.

    Article  Google Scholar 

  12. Murr L, Amato K, Li S, Tian Y, Cheng X, Gaytan S, Martinez E, Shindo P, Medina F, Wicker R. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4(7):1396.

    Article  Google Scholar 

  13. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implant Res. 2008;19(2):119.

    Article  Google Scholar 

  14. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol. 2002;29(S3):197.

    Article  Google Scholar 

  15. Attar H, Prashanth K, Chaubey A, Calin M, Zhang LC, Scudino S, Eckert J. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015;142(1):38.

    Article  Google Scholar 

  16. Helsen JA, Jürgen Breme H. Metals as Biomaterials. Berlin: Wiley; 1998. 522.

    Google Scholar 

  17. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J. 1993;43(3):245.

    Google Scholar 

  18. Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int. 1996;27(6):401.

    Google Scholar 

  19. Davidson J, Mishra A, Kovacs P, Poggie R. New surface-hardened, low-modulus, corrosion-resistant Ti–13Nb–13Zr alloy for total hip arthroplasty. Bio-Med Mater Eng. 1993;4(3):231.

    Google Scholar 

  20. Hao Y, Li S, Prima F, Yang R. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus. Scr Mater. 2012;67(5):487.

    Article  Google Scholar 

  21. Hao Y, Li S, Sun S, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1):112.

    Article  Google Scholar 

  22. Hao Y, Li S, Sun S, Zheng C, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.

    Article  Google Scholar 

  23. Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269.

    Article  Google Scholar 

  24. Karpat Y. Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining. J Mater Process Technol. 2011;211(4):737.

    Article  Google Scholar 

  25. Filiaggi M, Coombs N, Pilliar R. Characterization of the interface in the plasma-sprayed HA coating/Ti–6Al–4V implant system. J Biomed Mater Res. 1991;25(10):1211.

    Article  Google Scholar 

  26. El-Ghannam A, Starr L, Jones J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti–6Al–4V implant material in vitro. J Biomed Mater Res. 1998;41(1):30.

    Article  Google Scholar 

  27. Haghighi SE, Lu H, Jian G, Cao G, Habibi D, Zhang LC. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater Des. 2015;76(1):47.

    Article  Google Scholar 

  28. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65(1):21.

    Article  Google Scholar 

  29. Engh C, Bobyn J, Glassman A. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg. 1987;69(1):45.

    Google Scholar 

  30. Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124.

    Google Scholar 

  31. Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg Spine. 2000;93(2):259.

    Article  Google Scholar 

  32. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474.

    Article  Google Scholar 

  33. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27(13):2651.

    Article  Google Scholar 

  34. Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S, Yang C, Eckert J. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015;31(10):1001.

    Article  Google Scholar 

  35. Murr L, Quinones S, Gaytan S, Lopez M, Rodela A, Martinez E, Hernandez D, Martinez E, Medina F, Wicker R. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2(1):20.

    Article  Google Scholar 

  36. Li S, Murr L, Cheng X, Zhang Z, Hao Y, Yang R, Medina F, Wicker R. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012;60(3):793.

    Article  Google Scholar 

  37. Zhang LC, Sercombe T. Selective laser melting of low-modulus biomedical Ti–24Nb–4Zr–8Sn alloy: effect of laser point distance. Key Eng Mater. 2012;520:226.

    Article  Google Scholar 

  38. Hernandez J, Li S, Martinez E, Murr L, Pan X, Amato K, Cheng X, Yang F, Terrazas C, Gaytan S. Microstructures and hardness properties for β-phase Ti–24Nb–4Zr–7.9Sn alloy fabricated by electron beam melting. J Mater Sci Technol. 2013;29(11):1011.

    Article  Google Scholar 

  39. Attar H, Calin M, Zhang LC, Scudino S, Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A. 2014;593:170.

    Article  Google Scholar 

  40. Liu YJ, Li X, Zhang LC, Sercombe T. Processing and properties of topologically optimised biomedical Ti–24Nb–4Zr–8Sn scaffolds manufactured by selective laser melting. Mater Sci Eng A. 2015;642:268.

    Article  Google Scholar 

  41. Senkov O, Froes F. Thermohydrogen processing of titanium alloys. Int J Hydrogen Energy. 1999;24(6):565.

    Article  Google Scholar 

  42. Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Berlin: Wiley; 2003. 1.

    Book  Google Scholar 

  43. Zhang LC, Shen ZQ, Xu J. Mechanically milling-induced amorphization in Sn-containing Ti-based multicomponent alloy systems. Mater Sci Eng A. 2005;394(1–2):204.

    Article  Google Scholar 

  44. Lu HB, Poh CK, Zhang LC, Guo ZP, Yu XB, Liu HK. Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. J Alloys Compd. 2009;481(1):152.

    Article  Google Scholar 

  45. Zhang LC, Das J, Lu H, Duhamel C, Calin M, Eckert J. High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr Mater. 2007;57(2):101.

    Article  Google Scholar 

  46. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26(1):11.

    Article  Google Scholar 

  47. Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292.

    Article  Google Scholar 

  48. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.

    Article  Google Scholar 

  49. Guo Z, Fu J, Zhang Y, Hu Y, Wu Z, Shi L, Sha M, Li S, Hao Y, Yang R. Early effect of Ti–24Nb–4Zr–7.9Sn intramedullary nails on fractured bone. Mater Sci Eng C. 2009;29:963.

    Article  Google Scholar 

  50. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369.

    Article  Google Scholar 

  51. Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys. Mater Technol Adv Perform Mater. 2016;31(2):90.

    Google Scholar 

  52. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26.

    Article  Google Scholar 

  53. Attar H, Bönisch M, Calin M, Zhang LC, Scudino S, Eckert J. Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater. 2014;76(9):13.

    Article  Google Scholar 

  54. Wang X, Zhang LC, Fang M, Sercombe TB. The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mater Sci Eng A. 2014;597:370.

    Article  Google Scholar 

  55. Chua CK, Leong KF. 3D printing and additive manufacturing: principles and applications. Singapore: Nanyang Technological University; 2014. 23.

    Book  Google Scholar 

  56. Liu ZH, Zhang DQ, Chua CK, Leong KF. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact. 2013;84(10):72.

    Article  Google Scholar 

  57. Ramirez DA, Murr LE, Martinez E, Hernandez DH, Martinez JL, Machado BI, Medina F, Frigola P, Wicker RB. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 2011;59(10):4088.

    Article  Google Scholar 

  58. Sun SH, Koizumi Y, Kurosu S, Li YP, Chiba A. Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting. Acta Mater. 2014;86:305.

    Article  Google Scholar 

  59. Li XP, Wang XJ, Saunders M, Suvorova A, Zhang LC, Liu YJ, Fang MH, Huang ZH, Sercombe TB. A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25 % tensile ductility. Acta Mater. 2015;95:74.

    Article  Google Scholar 

  60. Gu D, Hagedorn YC, Meiners W, Meng G, Rui JSB, Wissenbach K, Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60(9):3849.

    Article  Google Scholar 

  61. Prashanth K, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey A, Kühn U, Eckert J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: effect of heat treatment. Mater Sci Eng A. 2014;590:153.

    Article  Google Scholar 

  62. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303.

    Article  Google Scholar 

  63. Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2006;13(4):196.

    Article  Google Scholar 

  64. Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater Sci Eng A. 2006;428(1):148.

    Article  Google Scholar 

  65. Kruth JP, Froyen L, Vaerenbergh JV, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. J Mater Process Technol. 2004;149(1–3):616.

    Article  Google Scholar 

  66. Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol. 2014;214(11):2522.

    Article  Google Scholar 

  67. Gu D, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133.

    Article  Google Scholar 

  68. Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci. 2007;253(19):8064.

    Article  Google Scholar 

  69. Panwisawas C, Qiu C, Sovani Y, Brooks J, Attallah M, Basoalto H. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr Mater. 2015;105:14.

    Article  Google Scholar 

  70. Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater. 2016;18(4):463.

    Article  Google Scholar 

  71. Facchini L, Magalini E, Robotti P, Molinari A, Höges S, Wissenbach K. Ductility of a Ti–6Al–4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyp J. 2010;16(6):450.

    Article  Google Scholar 

  72. Marcu T, Todea M, Gligor I, Berce P, Popa C. Effect of surface conditioning on the flowability of Ti6Al7Nb powder for selective laser melting applications. Appl Surf Sci. 2012;258(7):3276.

    Article  Google Scholar 

  73. Speirs M, Humbeeck JV, Schrooten J, Luyten J, Kruth J. The effect of pore geometry on the mechanical properties of selective laser melted Ti–13Nb–13Zr scaffolds. Proc CIRP. 2013;5:79.

    Article  Google Scholar 

  74. Cronskär M, Bäckström M, Rännar LE. Production of customized hip stem prostheses—a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyp J. 2013;19(5):365.

    Article  Google Scholar 

  75. Mazzoli A, Germani M, Raffaeli R. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Des. 2009;30(8):3186.

    Article  Google Scholar 

  76. Jardini AL, Larosa MA, Maciel Filho R, de Carvalho Zavaglia CA, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofac Surg. 2014;42(8):1877.

    Article  Google Scholar 

  77. Heinl P, Müller L, Körner C, Singer RF, Müller FA. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008;4(5):1536.

    Article  Google Scholar 

  78. Facchini L, Magalini E, Robotti P, Molinari A. Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J. 2009;15(3):171.

    Article  Google Scholar 

  79. Cansizoglu O, Harrysson O, Cormier D, West H, Mahale T. Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Mater Sci Eng A. 2008;492(1):468.

    Article  Google Scholar 

  80. Ponader S, Von Wilmowsky C, Widenmayer M, Lutz R, Heinl P, Körner C, Singer RF, Nkenke E, Neukam FW, Schlegel KA. In vivo performance of selective electron beam-melted Ti–6Al–4V structures. J Biomed Mater Res Part A. 2010;92(1):56.

    Article  Google Scholar 

  81. Al-Bermani S, Blackmore M, Zhang W, Todd I. The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metallurg Mater Trans A. 2010;41(13):3422.

    Article  Google Scholar 

  82. Hrabe N, Quinn T. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), part 2: energy input, orientation, and location. Mater Sci Eng A. 2013;573:271.

    Article  Google Scholar 

  83. Zhe W, Jun Z, Shujun L, Wentao H, Yulin H, Rui Y. Effects of part size on microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting. Rare Metal Mater Eng. 2014;43:161.

    Google Scholar 

  84. Rafi HK, Starr TL, Stucker BE. A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting. Int J Adv Manuf Technol. 2013;69(5–8):1299.

    Article  Google Scholar 

  85. Karlsson J, Snis A, Engqvist H, Lausmaa J. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti–6Al–4V powder fractions. J Mater Process Technol. 2013;213(12):2109.

    Article  Google Scholar 

  86. Qiu C, Adkins NJ, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A. 2013;578:230.

    Article  Google Scholar 

  87. Song B, Dong S, Zhang B, Liao H, Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des. 2012;35(3):120.

    Article  Google Scholar 

  88. Zhao XL, Li SJ, Zhang M, Liu YD, Sercombe TB, Wang SG, Hao YL, Yang R, Murr E. Comparison of microstructures and mechanical properties for Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting. Mater Des. 2016;95:21.

    Google Scholar 

  89. Ehtemam-Haghighi S, Liu Y, Cao G, Zhang LC. Influence of Nb on the β → α″ martensitic phase transformation and properties of the newly designed Ti–Fe–Nb alloys. Mater Sci Eng C. 2015;60:503.

    Article  Google Scholar 

  90. Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A. 2014;598:327.

    Article  Google Scholar 

  91. Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard H, Maier H. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue. 2013;48:300.

    Article  Google Scholar 

  92. Cain V, Thijs L, Van Humbeeck J, Van Hooreweder B, Knutsen R. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Addit Manuf. 2015;5:68.

    Article  Google Scholar 

  93. Heinl P, Rottmair A, Körner C, Singer RF. Cellular titanium by selective electron beam melting. Adv Eng Mater. 2007;9(5):360.

    Article  Google Scholar 

  94. Murr L, Gaytan S, Medina F, Lopez H, Martinez E, Machado B, Hernandez D, Martinez L, Lopez M, Wicker R. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Lond A Math Phys Eng Sci. 1999;2010(368):1917.

    Google Scholar 

  95. Sallica-Leva E, Jardini A, Fogagnolo J. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. J Mech Behav Biomed Mater. 2013;26:98.

    Article  Google Scholar 

  96. Van Bael S, Kerckhofs G, Moesen M, Pyka G, Schrooten J, Kruth JP. Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Mater Sci Eng A. 2011;528(24):7423.

    Article  Google Scholar 

  97. Zhang S, Wei Q, Cheng L, Li S, Shi Y. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des. 2014;63:185.

    Article  Google Scholar 

  98. Sun J, Yang Y, Wang D. Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater Des. 2013;49:545.

    Article  Google Scholar 

  99. Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr L. Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting method. Acta Biomater. 2014;10(10):4537.

    Article  Google Scholar 

  100. Yavari SA, Ahmadi S, Wauthle R, Pouran B, Schrooten J, Weinans H, Zadpoor A. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. J Mech Behav Biomed Mater. 2015;43:91.

    Article  Google Scholar 

  101. Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng Part C Methods. 2008;15(2):115.

    Article  Google Scholar 

  102. Li X, Wang C, Zhang W, Li Y. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Mater Lett. 2009;63(3):403.

    Article  Google Scholar 

  103. Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, Hao YL, Zhang ZY, Guo Z. Porous titanium–6 aluminum–4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 2013;37(12):E191.

    Article  Google Scholar 

  104. Li XK, Yuan CF, Wang JL, Zhang YQ, Zhang ZY, Guo Z. The treatment effect of porous titanium alloy rod on the early stage talar osteonecrosis of sheep. PLoS One. 2013;8(3):58459.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (No. 2015AA033702), the National Basic Research Program of China (Nos. 2012CB619103 and 2012CB933901) and the National Natural Science Foundation of China (Nos. 51271180 and 51271182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, YL., Li, SJ. & Yang, R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 35, 661–671 (2016). https://doi.org/10.1007/s12598-016-0793-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0793-5

Keywords