Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The emerging Ni-based superconducting oxide thin films are rather intriguing to the entire condensed matter physics. Here, we report some brief experimental results on transport measurements for a 14-nm-thick superconducting Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure with an onset transition temperature of ~ 9.5 K. Photoluminescence measurements reveal that there is negligible oxygen vacancy creation in the SrTiO3 substrate during thin-film deposition and post chemical reduction for the Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. It was found that the critical current density of the Nd0.8Sr0.2NiO2/SrTiO3 thin-film heterostructure is relatively small, ~ 4 × 103 A·cm−2. Although the surface steps of SrTiO3 substrates lead to an anisotropy for in-plane resistivity, the superconducting transition temperatures are almost the same. The out-of-plane magnetotransport measurements yield an upper critical field of ~ 11.4 T and an estimated in-plane Ginzburg–Landau coherence length of ~ 5.4 nm. High-field magnetotransport measurements up to 50 T reveal anisotropic critical fields at 1.8 K for three different measurement geometries and a complicated Hall effect. An electric field applied via the SrTiO3 substrate slightly varies the superconducting transition temperature. These experimental results could be useful for this rapidly developing field.

摘要

新兴镍基超导氧化物薄膜在整个凝聚态物理领域引起了很大关注。在此论文中, 我们通过电输运测量研究了一个 14 nm 厚的超导 Nd0.8Sr0.2NiO2/SrTiO3 异质结样品。这个样品的起始超导转变温度约为 9.5 K。光致荧光谱测量发现: 此异质结中 SrTiO3基片内部的氧空位含量极少。这说明纳米薄膜的沉积及后续化学氢化过程并没有在 SrTiO3 单晶基片中引入显著的氧空位。我们还发现这种超导异质结的临界电流密度相对很低, 约为 4 × 103 A·cm−2。虽然 SrTiO3 单晶基片的表面台阶诱发了面内电阻率的各向异性, 但超导转变温度却几乎不受影响。在薄膜表面的垂直方向施加磁场的电输运测量揭示出此超导样品的上临界场约为11.4 T, 对应面内Ginzburg-Landau相干长度约为 5.4 nm。高达 50 T 的强磁场电输运测量研究发现: 1.8 K 下, 完全破坏超导态使得样品达到正常态电阻率的临界磁场具有各向异性。

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li D, Lee K, Wang BY, Osada M, Crossley S, Lee HR, Cui Y, Hikita Y, Hwang HY. Superconductivity in an infinite-layer nickelate. Nature. 2019;572(7771):624.

    Article  CAS  Google Scholar 

  2. Hayward MA, Rosseinsky MJ. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 2013;5(6):839.

    Article  Google Scholar 

  3. Zhang FC, Rice TM. Effective Hamiltonian for the superconducting Cu oxides. Phys Rev B. 1988;37(1):3759.

    Article  CAS  Google Scholar 

  4. Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, Arita R. Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys Rev B. 2019;100(20):205138.

    Article  CAS  Google Scholar 

  5. Jiang P, Si L, Liao Z, Zhong Z. Electronic structure of rare-earth infinite-layer RNiO2 (R = La, Nd). Phys Rev B. 2019;100(20):201106(R).

    Article  Google Scholar 

  6. Botana AS, Norman MR. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys Rev X. 2020;10(1):011024.

    CAS  Google Scholar 

  7. Zhang GM, Yang YF, Zhang FC. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys Rev B. 2020;101(2):020501(R).

    Article  Google Scholar 

  8. Adhikary P, Bandyopadhyay S, Das T, Dasgupta I, Saha-Dasgupta T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys Rev B. 2020;102(10):100501(R).

    Article  Google Scholar 

  9. Gu Y, Zhu S, Wang X, Hu J, Chen H. A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates. Commun Phys. 2020;3:84.

    Article  CAS  Google Scholar 

  10. Geisler B, Pentcheva R. Fundamental difference in the electronic reconstruction of infinite-layer versus perovskite neodymium nickelate films on SrTiO3(001). Phys Rev B. 2020;102(2):020502(R).

    Article  Google Scholar 

  11. Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, Saha-Dasgupta T. Superconductivity in infinite-layer nickelates: role of f orbitals. Phys Rev B. 2020;102(22):220502(R).

    Article  Google Scholar 

  12. He R, Jiang P, Lu Y, Song Y, Chen M, Jin M, Shui L, Zhong Z. Polarity-induced electronic and atomic reconstruction at NdNiO2/SrTiO3 interfaces. Phys Rev B. 2020;102(3):035118.

    Article  CAS  Google Scholar 

  13. Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F, Werner P. Normal State of Nd1xSrxNiO2 from self-consistent GW + EDMFT. Phys Rev X. 2020;10(4):041047.

    CAS  Google Scholar 

  14. Nica EM, Krishna J, Yu R, Si Q, Botana AS, Erten O. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys Rev B. 2020;102(2):020504(R).

    Article  Google Scholar 

  15. Leonov I, Skornyakov SL, Savrasov SY. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping. Phys Rev B. 2020;101(24):241108(R).

    Article  Google Scholar 

  16. Lechermann F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys Rev B. 2020;101(8):081110(R).

    Article  Google Scholar 

  17. Lechermann F. Multiorbital processes rule the Nd1xSrxNiO2 normal state. Phys Rev X. 2020;10(4):041002.

    CAS  Google Scholar 

  18. Krishna J, LaBollita H, Fumega AO, Pardo V, Botana AS. Effects of Sr doping on the electronic and spin-state properties of infinite-layer nickelates: nature of holes. Phys Rev B. 2020;102(22):224506.

    Article  CAS  Google Scholar 

  19. Katukuri VM, Bogdanov NA, Weser O, Brink J, Alavi A. Electronic correlations and magnetic interactions in infinite-layer NdNiO2. Phys Rev B. 2020;102(24):241112(R).

    Article  Google Scholar 

  20. Jiang M, Berciu M, Sawatzky GA. Critical nature of the Ni spin state in doped NdNiO2. Phys Rev Lett. 2020;124(20):207004.

    Article  CAS  Google Scholar 

  21. Zhang Y, Lin LF, Hu W, Moreo A, Dong S, Dagotto E. Similarities and differences between nickelate and cuprate films grown on a SrTiO3 substrate. Phys Rev B. 2020;102(19):195117.

    Article  CAS  Google Scholar 

  22. Werner P, Hoshino S. Nickelate superconductors: multiorbital nature and spin freezing. Phys Rev B. 2020;101(4):041104(R).

    Article  Google Scholar 

  23. Wang Z, Zhang GM, Yang YF, Zhang FC. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys Rev B. 2020;102(22):220501(R).

    Article  Google Scholar 

  24. Wang Y, Kang CJ, Miao H, Kotliar G. Hund’s metal physics: from SrNiO2 to LaNiO2. Phys Rev B. 2020;102(16):161118(R).

    Article  Google Scholar 

  25. Si L, Xiao W, Kaufmann J, Tomczak JM, Lu Y, Zhong Z, Held K. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys Rev Lett. 2020;124(16):166402.

    Article  CAS  Google Scholar 

  26. Ryee S, Yoon H, Kim TJ, Jeong MY, Han MJ. Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate Nd1xSrxNiO2. Phys Rev B. 2020;101(6):064513.

    Article  CAS  Google Scholar 

  27. Liu Z, Xu C, Cao C, Zhu W, Wang ZF, Yang J. Doping dependence of electronic structure of infinite-layer NdNiO2. Phys Rev B. 2020;103(4):045103.

    Article  Google Scholar 

  28. Wan X, Ivanov V, Resta G, Leonov I, Savrasov SY. Exchange interactions and sensitivity of the Ni two-hole spin state to Hund’s coupling in doped NdNiO2. Phys Rev B. 2020;103(7):075123.

    Article  Google Scholar 

  29. Wu X, Sante DD, Schwemmer T, Hanke W, Hwang HY, Raghu S, Thomale R. Robust dx2y2 wave superconductivity of infinite-layer nickelates. Phys Rev B. 2020;101(6):060504(R).

    Article  Google Scholar 

  30. Wu X, Jiang K, Sante DD, Hanke W, Schnyder AP, Hu JP, Thomale R. Surface s-wave superconductivity for oxide-terminated infinite-layer thickness. arXiv. 2020;2008.06009. https://arxiv.org/abs/2008.06009.

  31. Osada M, Wang BY, Goodge BH, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis LF, Hwang HY. A superconducting praseodymium nickelate with infinite layer structure. Nano Lett. 2020;20(8):5735.

    Article  CAS  Google Scholar 

  32. Li D, Wang BY, Lee K, Harvey SP, Osada M, Goodge BH, Kourkoutis LF, Hwang HY. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys Rev Lett. 2020;125(2):027001.

    Article  CAS  Google Scholar 

  33. Lee K, Goodge BH, Li D, Osada M, Wang BY, Cui Y, Kourkoutis LF, Hwang HY. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 2020;8(4):041107.

    Article  CAS  Google Scholar 

  34. Wang BY, Li D, Goodge BH, Lee K, Osada M, Harvey SP, Kourkoutis LF, Beasley MR, Hwang HY. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat Phys. 2021;17(4):473.

    Article  CAS  Google Scholar 

  35. Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y, Wen HH. Single particle tunneling spectrum of superconducting Nd1xSrxNiO2 thin films. Nat Commun. 2020;11:6027.

    Article  CAS  Google Scholar 

  36. Xiang Y, Li Q, Li Y, Yang H, Nie Y, Wen HH. Physical properties revealed by transport measurements for superconducting Nd0.8Sr0.2NiO2 thin films. Chin Phys Lett. 2021;38(4):047401.

  37. Gao Q, Zhao Y, Zhou X, Zhu Z. Preparation of superconducting thin films of infinite-layer nickelate Nd0.8Sr0.2NiO2. arXiv. 2021;2102.10292. arxiv.org/abs/2102.10292v3.

  38. Zeng S, Tang CS, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar GJ, Jani H, Lim ZS, Han K, Wan D, Yang P, Pennycook SJ, Wee ATS, Ariando A. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys Rev Lett. 2020;125(14):147003.

    Article  CAS  Google Scholar 

  39. Zhou XR, Feng ZX, Qin PX, Yan H, Hu S, Guo HX, Wang XN, Wu HJ, Zhang X, Chen HY, Qiu XP, Liu ZQ. Absence of superconductivity in Nd0.8Sr0.2NiOx thin films without chemical reduction. Rare Met. 2020;39(4):368.

    Article  CAS  Google Scholar 

  40. Liu ZQ, Leusink DP, Wang X, Lü WM, Gopinadhan K, Annadi A, Zhao YL, Huang XH, Zeng SW, Huang Z, Srivastava A, Dhar S, Venkatesan T, Ariando. Metal-insulator transition in SrTiO3−x thin films induced by frozen-out carriers. Phys Rev Lett. 2011;107(14):146802.

    Article  CAS  Google Scholar 

  41. Liu ZQ, Li CJ, Lü WM, Huang XH, Huang Z, Zeng SW, Qiu XP, Huang LS, Annadi A, Chen JS, Coey JMD, Venkatesan T, Ariando. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys Rev X. 2013;3(2):021010.

    CAS  Google Scholar 

  42. Huebener RP, Kampwirth RT, Martin RL, Barbee T, Zubeek RB. Critical current density in superconducting niobium films. J Low Temp Phys. 1975;19:247.

    Article  CAS  Google Scholar 

  43. Chen Y, Bian W, Huang W, Tang X, Zhao G, Li L, Li N, Huo W, Jia J, You C. High critical current density of YBa2Cu3O7−x superconducting films prepared through a DUV-assisted solution deposition process. Sci Rep. 2016;6:38257.

    Article  CAS  Google Scholar 

  44. Zhao Y, Feng Y, Cheng CH, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuka N, Murakami M. High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure. Appl Phys Lett. 2001;79(8):1154.

    Article  CAS  Google Scholar 

  45. Pallecchi I, Tropeano M, Lamura G, Pani M, Palombo M, Palenzona A, Putti M. Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors. Physica C. 2012;482:68.

    Article  CAS  Google Scholar 

  46. Li Q, He C, Si J, Zhu X, Zhang Y, Wen HH. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun Mater. 2020;1:16.

    Article  Google Scholar 

  47. Wang BX, Zheng H, Krivyakina E, Chmaissem O, Lopes PP, Lynn JW, Gallington LC, Ren Y, Rosenkranz S, Mitchell JF, Phelan D. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys Rev Mater. 2020;4(8):084409.

    Article  CAS  Google Scholar 

  48. He C, Ming X, Li Q, Zhu X, Si J, Wen HH. Synthesis and physical properties of perovskite Sm1−xSrxNiO3 (x = 0, 0.2) and infinite-layer Sm0.8Sr0.2NiO2 nickelates. arXiv. 2020;2010.11777. https://arxiv.org/abs/2010.11777.

  49. Werthamer NR, Helfand E, Hohenberg PC. Temperature and purity dependence of the superconducting critical field Hc2. III. Electron spin and spin-orbit effects. Phys Rev. 1966;147(1):295.

    Article  CAS  Google Scholar 

  50. Talantsev EF. In-plane p-wave coherence length in iron-based superconductors. Results Phys. 2020;18:103339.

    Article  Google Scholar 

  51. Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat Nanotechnol. 2019;14(2):131.

    Article  CAS  Google Scholar 

  52. Müller KA, Burkard H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B. 1979;19(7):3593.

    Article  Google Scholar 

  53. Liu ZQ, Li L, Gai Z, Clarkson JD, Hsu SL, Wong AT, Fan LS, Lin MW, Rouleau CM, Ward TZ, Lee HN, Sefat AS, Christen HM, Ramesh R. Full electroresistance modulation in a mixed-phase metallic alloy. Phys Rev Lett. 2016;116(9):097203.

    Article  CAS  Google Scholar 

  54. Liu ZQ, Chen H, Wang JM, Liu JH, Wang K, Feng ZX, Yan H, Wang XR, Jiang CB, Coey JMD, MacDonald AH. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat Electron. 2018;1(3):172.

    Article  CAS  Google Scholar 

  55. Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang SL, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun. 2018;9:41.

    Article  CAS  Google Scholar 

  56. Yan H, Feng Z, Qin P, Zhou X, Guo H, Wang X, Chen H, Zhang X, Wu H, Jiang C, Liu Z. Electric-field-controlled antiferromagnetic spintronic devices. Adv Mater. 2020;32(12):1905603.

    Article  CAS  Google Scholar 

  57. Guo H, Feng Z, Yan H, Liu J, Zhang J, Zhou X, Qin P, Cai J, Zeng Z, Zhang X, Wang X, Chen H, Wu H, Jiang C, Liu Z. Giant piezospintronic effect in a noncollinear antiferromagnetic metal. Adv Mater. 2020;32(26):2002300.

    Article  CAS  Google Scholar 

  58. Qin P, Feng Z, Zhou X, Guo H, Wang J, Yan H, Wang X, Chen H, Zhang X, Wu H, Zhu Z, Liu Z. Anomalous Hall effect, robust negative magnetoresistance, and memory devices based on a noncollinear antiferromagnetic metal. ACS Nano. 2020;14(5):6242.

    Article  CAS  Google Scholar 

  59. Wang X, Feng Z, Qin P, Yan H, Zhou X, Guo H, Leng Z, Chen W, Jia Q, Hu Z, Wu H, Zhang X, Jiang C, Liu Z. Integration of the noncollinear antiferromagnetic metal Mn3Sn onto ferroelectric oxides for electric-field control. Acta Mater. 2019;181:537.

    Article  CAS  Google Scholar 

  60. Feng Z, Qin P, Yang Y, Yan H, Guo H, Wang X, Zhou X, Han Y, Yi J, Qi D, Yu X, Breese MBH, Zhang X, Wu H, Chen H, Xiang H, Jiang C, Liu Z. A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity. Acta Mater. 2021;204:116516.

    Article  CAS  Google Scholar 

  61. Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.

    Article  CAS  Google Scholar 

  62. Feng Z, Yan H, Liu Z. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv Electron Mater. 2019;5(1):1800466.

    Article  Google Scholar 

  63. Liu Z, Feng Z, Yan H, Wang X, Zhou X, Qin P, Guo H, Yu R, Jiang C. Antiferromagnetic piezospintronics. Adv Electron Mater. 2019;5(7):1900176.

    Article  Google Scholar 

  64. Xi XX, Li Q, Doughty C, Kwon C, Bhattacharya S, Findikoglu AT, Venkatesan T. Electric field effect in high Tc superconducting ultrathin YBa2Cu3O7−x films. Appl Phys Lett. 1991;59(26):3470.

    Article  CAS  Google Scholar 

  65. Li G, Li H, Liu JS, Chen W. Fabrication and characterization of superconducting RSFQ circuits. Rare Met. 2019;38(10):899.

    Article  CAS  Google Scholar 

  66. Liu ZQ, Lü WM, Lim SL, Qiu XP, Bao NN, Motapothula M, Yi JB, Yang M, Dhar S, Venkatesan T, Ariando. Reversible room-temperature ferromagnetism in Nb-doped SrTiO3 single crystals. Phys Rev B. 2013;87(22):220405(R).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51822101, 51861135104 and 51771009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, XR., Feng, ZX., Qin, PX. et al. Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure. Rare Met. 40, 2847–2854 (2021). https://doi.org/10.1007/s12598-021-01768-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01768-3

Keywords