Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To understand the formation and growth mechanism of the magnetite phase during the fluidized reduction of hematite, a high-purity hematite ore was isothermally reduced using a 20vol% CO?80vol% CO2 gas mixture in a micro-fluidized bed to examine the process of the selective conversion of hematite to magnetite. The micro-structural characteristics of the magnetite phase were investigated using scanning electron microscopy (SEM) and the Brunauer, Emmett, and Teller (BET) method, and the thickness of the magnetite layer was measured and evaluated using statistical analysis. The experimental results showed that the fresh magnetite nuclei were dense needles of different lengths, and the original hematite grains became porous after complete reduction to the magnetite phase. The thickness of the magnetite layer increased with an increase in reduction temperature and reduction time. The growth kinetics of the magnetite layer was investigated, and the value of the activation energy E was estimated to be 28.33 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.S. Sun, Y.X. Han, P. Gao, and J.W. Yu, Size distribution behavior of metallic iron particles in coal-based reduction products of an oolitic iron ore, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 249.

    Article  CAS  Google Scholar 

  2. J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, and Y.S. Sun, Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation, Sep. Sci. Technol., 52(2017), No. 10, p. 1768.

    Article  CAS  Google Scholar 

  3. T.J. Chun, D.Q. Zhu, and J. Pan, Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 223.

    Article  CAS  Google Scholar 

  4. L.Q. Luo, M. Chen, H.T. Yan, S.S. Cui, and Y.J. Zhang, Magnetic reduction roasting and magnetic separation of oolitic iron ore, Chin. J. Proc. Eng., 14(2014), No. 4, p. 593.

    CAS  Google Scholar 

  5. X.M. Luo, Y.F. Wang, S.M. Wen, M.Z. Ma, C.Y. Sun, W.Z. Yin, and Y.Q. Ma, Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores, Int. J. Miner. Process., 152(2016), p. 1.

    Article  CAS  Google Scholar 

  6. D. Li, W.Z. Yin, J.W. Xue, J. Yao, Y.F. Fu, and Q. Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 736.

    Article  CAS  Google Scholar 

  7. X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of siderite on reverse anionic flotation of quartz from hematite, J. Cent. South Univ., 23(2016), No. 1, p. 52.

    Article  CAS  Google Scholar 

  8. X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector, J. Cent. South Univ., 23(2016), No. 3, p. 529.

    Article  CAS  Google Scholar 

  9. S. Song, S. Lu, and A. Lopez Valdivieso, Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores, Miner. Eng., 15(2002), No. 6, p. 415.

    Article  CAS  Google Scholar 

  10. L.Q. Luo, J.S. Zhang, and Y.F. Yu, Recovering limonite from Australia iron ores by flocculation-high intensity magnetic separation, J. Cent. South Univ. Technol., 12(2005), No. 6, p. 682.

    Article  CAS  Google Scholar 

  11. Q.S. Zhu and H.Z. Li, Status quo and development prospect of magnetizing roasting via fluidized bed for low grade iron ore, CIESC J., 65(2014), No. 7, p. 2437.

    CAS  Google Scholar 

  12. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Beneficiation of an iron ore fines by magnetization roasting and magnetic separation, Int. J. Miner. Process., 168(2017), p. 102.

    Article  CAS  Google Scholar 

  13. X. Liu, Y. Yu, Z. Hong, Z. Peng, J. Li, Q. Zhao, Development and application of packaged technology for flash (fluidization) magnetizing roasting of refractory weakly magnetic iron ore, Min. Metall. Eng., 37(2017), No. 2, p. 40.

    Google Scholar 

  14. W. Chen, Y.F. Yu, Z. Feng, X. Lu, Q. Zhao, X. Liu, Six hundred thousand t/a refractory siderite flash magnetizing roasting complete sets technique and equipment, Met. Mine, 2017, No. 3, p. 54.

    Google Scholar 

  15. Y.F. Yu and W. Chen, Application of flash magnetizing roasting technique in beneficiation of siderite and limonite, [in] International Symposium on Project Management, Shuyang, 2010, p. 13.

    Google Scholar 

  16. A. Boehm, M. Boehm, and A. Kogelbauer, Neutrons for mineral processingthermo diffractometry to investigate mineral selective magnetizing flash roasting, Chem. Ing. Tech., 86(2014), No. 6, p. 883.

    Article  CAS  Google Scholar 

  17. Y. Li and T. Zhu, Recovery of low grade haematite via fluidised bed magnetising roasting: investigation of magnetic properties and liberation characteristics, Ironmaking Steel-making, 39(2012), No. 2, p. 112.

    Article  CAS  Google Scholar 

  18. Y.J. Li, R. Wang, Y.X. Han, and X.C. Wei, Phase transformation in suspension roasting of oolitic hematite ore, J. Cent. South Univ., 22(2015), No. 12, p. 4560.

    Article  CAS  Google Scholar 

  19. Y.F. Yu and C.Y. Qi, Magnetizing roasting mechanism and effective ore dressing process for oolitic hematite ore, J. Wuhan. Univ. Technol., 26(2011), No. 2, p. 176.

    Article  CAS  Google Scholar 

  20. C. Feilmayr, A. Thurnhofer, F. Winter, H. Mali, and J. Schenk, Reduction behavior of hematite to magnetite under fluidized bed conditions, ISIJ Int., 44(2004), No. 7, p. 1125.

    Article  CAS  Google Scholar 

  21. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation, J. Min. Metall. B, 54(2018), No. 1, p. 21.

    Article  CAS  Google Scholar 

  22. J.W. Yu, Y.X. Han, P. Gao, Y.J. Li, S. Yuan, and W.B. Li, An innovative methodology for recycling iron from magnetic preconcentrate of an iron ore tailing, Physicochem. Prob. Miner. Process., 54(2018), p. 668.

    CAS  Google Scholar 

  23. J.W. Yu, Y.X. Han, Y.J. Li, P. Gao, and W.B. Li, Mechanism and kinetics of the reduction of hematite to magnetite with CO-CO2 in a micro-fluidized bed, Minerals, 7(2017), No. 11, 209.

    Article  Google Scholar 

  24. J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 2019. DOI: 10.1080/08827508.2019.1634565

    Google Scholar 

  25. Y.S. Sun, X.R. Zhu, Y.X. Han, and Y.J. Li, Green magnetization roasting technology for refractory iron ore using side-rite as a reductant, J. Cleaner Prod., 206(2019), p. 40.

    Article  CAS  Google Scholar 

  26. X.L. Zhang, Y.X. Han, Y.S. Sun, and Y.J. Li, Innovative utilization of refractory iron ore via suspension magnetization roasting: A pilot-scale study, Powder Technol., 352(2019), p. 16.

    Article  CAS  Google Scholar 

  27. X.L. Zhang, Y.X. Han, Y.S. Sun, Y. Lv, Y.J. Li, and Z.D. Tang, An novel method for iron recovery from iron ore tailings with pre-concentration followed by magnetization roasting and magnetic separation, Miner. Process. Extr. Metall. Rev., 2019. DOI: 10.1080/08827508.2019.1604522

    Google Scholar 

  28. G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 8, p. 757.

    Article  CAS  Google Scholar 

  29. Y.S. Sun, Y.X. Han, Y.J. Li, and Y.F. Li, Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123.

    Article  CAS  Google Scholar 

  30. M. Et-Tabirou, B. Dupré, and C. Gleitzer, Hematite single crystal reduction into magnetite with CO-CO2, Metall. Trans. B, 19(1988), No. 2, p. 311.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Nos. 51734005 and 51674065), the China Postdoctoral Science Foundation (No. 2018M631812), and Open Foundation of State Key Laboratory of Mineral Processing, Beijing General Research Institute of Mining & Metallurgy Group, China (No. BGRIMM-KJSKL-2019-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-jun Li or Peng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Jw., Han, Yx., Li, Yj. et al. Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed. Int J Miner Metall Mater 26, 1231–1238 (2019). https://doi.org/10.1007/s12613-019-1868-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1868-8

Keywords