Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

FeNiCoCrTi0.5 coatings with different process parameters were fabricated by laser cladding. The macro-morphology, phase, micro-structure, hardness, and wear resistance of each coating were studied. The smoothness and dilution rate of the FeNiCoCrTi0.5 coating generally increased with the increase of specific energy (Es), which is the laser irradiation energy received by a unit area. FeNiCoCrTi0.5 coatings at different parameters had bcc, fcc, and Ti-rich phases as well as equiaxed, dendritic, and columnar structures. When Es increased, the size of each structure increased and the distribution area of the columnar and dendritic structures changed. The prepared FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm−2 had the highest hardness and the best wear resistance, the highest hardness of the coating reached HV 498.37, which is twice the substrate hardness. The average hardness of the FeNiCoCrTi0.5 coating with the Es of 72.22 J·mm−2 was 15.8% higher than the lowest average hardness of the coating with the Es of 108.33 J·mm−2. The worn surface morphologies indicate that the FeNiCoCrTi0.5 coatings exhibited abrasive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.F. Ye, K. Feng, Z.G. Li, F.G. Lu, R.F. Li, J. Huang, and Y.X. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Appl. Surf. Sci., 396(2017), p. 1420.

    Article  CAS  Google Scholar 

  2. W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, and Z.P. Lu, Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy, Scripta Mater., 68(2013), No. 7, p. 526.

    Article  CAS  Google Scholar 

  3. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60(2012), No. 16, p. 5723.

    Article  CAS  Google Scholar 

  4. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd., 628(2015), p. 170.

    Article  CAS  Google Scholar 

  5. Q.C. Fan, B.S. Li, and Y. Zhang, Influence of Al and Cu elements on the microstructure and properties of (FeCrNiCo)xCuy high-entropy alloys, J. Alloys Compd., 614(2014), p. 203.

    Article  CAS  Google Scholar 

  6. J. Li, W. Wu, Z.Q. Cao, D.W. Deng, and T.J. Li, Microstructure evolution and wear behavior of the laser cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb high-entropy alloy coatings, J. Therm. Spray Technol., 25(2016), No. 4, p. 806.

    Article  Google Scholar 

  7. X.T. Liu, W.B. Lei, Q.J. Wang, W.P. Tong, C.S. Liu, and J.Z. Cui, Laser surface alloying of low carbon steel using high-entropy alloy precursors, J. Iron Steel Res. Int., 23(2016), No. 11, p. 1195.

    Article  Google Scholar 

  8. R.B. Nair, H.S. Arora, S. Mukherjee, S. Singh, H. Singh, and H.S. Grewal, Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy, Ultrason. Sonochem., 41(2017), p. 252.

    Article  Google Scholar 

  9. M.N. Zhang, X.L. Zhou, X.N. Yu, and J.H. Li, Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding, Surf. Coat. Technol., 311(2017), p. 321.

    Article  CAS  Google Scholar 

  10. C. Huang, Y.Z. Zhang, J.Y. Shen, and R. Vilar, Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4 V alloy, Surf. Coat. Technol., 206(2011), No. 6, p. 1389.

    Article  CAS  Google Scholar 

  11. T.T. Shun, C.H. Hung, and C.F. Lee, The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700°C, J. Alloys Compd., 495(2010), No. 1, p. 55.

    Article  CAS  Google Scholar 

  12. Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, and J.W. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy, Mater. Chem. Phys., 210(2018), p. 233.

    Article  CAS  Google Scholar 

  13. P.D. Jablonski, J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of high entropy alloys, JOM, 67(2015), No. 10, p. 2278.

    Article  CAS  Google Scholar 

  14. R.S. Rajamure, H.D. Vora, N. Gupta, S. Karewar, S.G. Srinivasan, and N.B. Dahotre, Laser surface alloying of molybdenum on aluminum for enhanced wear resistance, Surf. Coat. Technol., 258(2014), p. 337.

    Article  CAS  Google Scholar 

  15. F.Y. Shu, L. Wu, H.Y. Zhao, S.H. Sui, L. Zhou, J. Zhang, W.X. He, P. He, and B.S. Xu, Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating, Mater. Lett., 211(2018), p. 235.

    Article  CAS  Google Scholar 

  16. Z.B. Cai, X.J. Pang, X.F. Cui, X. Wen, Z. Liu, M.L. Dong, Y. Li, and G. Jin, In situ laser synthesis of high entropy alloy coating on Ti-6Al-4V alloy: characterization of microstructure and properties, Mater. Sci. Forum, 898(2017), p. 643.

    Article  Google Scholar 

  17. D.Y. Lin, N.N. Zhang, B. He, X. Gong, Y. Zhang, D.Y. Li, and F.Y. Dong, Structural evolution and performance changes in FeCoCrNiAlNbx high-entropy alloy coatings cladded by laser, J. Therm. Spray Technol., 26(2017), No. 8, p. 2005.

    Article  CAS  Google Scholar 

  18. A. Emamian, S.F. Corbin, and A. Khajepour, The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding, Surf. Coat. Technol., 206(2011), No. 1, p. 124.

    Article  CAS  Google Scholar 

  19. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279.

    Article  CAS  Google Scholar 

  20. Q.H. Li, T.M. Yue, Z.N. Guo, and X. Lin, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1767.

    Article  CAS  Google Scholar 

  21. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty, Plasma-sprayed high entropy alloys: microstructure and properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 46(2015), No. 2, p. 791.

    Article  CAS  Google Scholar 

  22. M. Braic, V. Braic, M.B. Alaceanu, C.N. Zoita, A.V. Ladescu, and E. Grigore, Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering, Surf. Coat. Technol., 204(2010), No. 12–13, p. 2010.

    Article  CAS  Google Scholar 

  23. M. Braic, V. Braic, A. Vladescu, C.N. Zoita, and M. Balaceanu, Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films, Prog. Nat. Sci.-Mater. Int., 24(2014), No. 4, p. 305.

    Article  CAS  Google Scholar 

  24. X. Xu, G.Y. Mi, L. Chen, L.D. Xiong, P. Jiang, X.Y. Shao, and C.M. Wang, Research on microstructures and properties of Inconel 625 coatings obtained by laser cladding with wire, J. Alloys Compd., 715(2017), p. 362.

    Article  CAS  Google Scholar 

  25. Y.L. Yang, S.Y. Cao, S. Zhang, C. Xu, and G.W. Qin, Microstructure and wear resistance of Ti-Cu-N composite coating prepared via laser cladding/laser nitriding technology on Ti-6Al-4V alloy, Appl. Phys. A, 123(2017), No. 7, art. No. 474.

  26. J. Zeisig, N. Schädlich, L. Giebeler, J. Sander, J. Eckert, U. Kühn, and J. Hufenbach, Microstructure and abrasive wear behavior of a novel FeCrMoVC laser cladding alloy for high-performance tool steels, Wear, 382–383(2017), p. 107.

    Article  Google Scholar 

  27. Z.B. Cai, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and G. Jin, Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing, Opt. Laser Technol., 99(2018), p. 276.

    Article  CAS  Google Scholar 

  28. F.Y. Shu, B. Yang, S.Y. Dong, H.Y. Zhao, B.S. Xu, F.J. Xu, B. Liu, P. He, and J.C. Feng, Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings, Appl. Surf. Sci., 450(2018), p. 538.

    Article  CAS  Google Scholar 

  29. H. Zhang, Y. Pan, Y.Z. He, and H.S. Jiao, Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci., 257(2011), No. 6, p. 2259.

    Article  CAS  Google Scholar 

  30. Y. Shi, C. Ni, J. Liu, and G.Z. Huang, Microstructure and properties of laser clad high-entropy alloy coating on aluminium, Mater. Sci. Technol., 34(2018), No. 10, p. 1239.

    Article  CAS  Google Scholar 

  31. D.M. Goodarzi, J. Pekkarinen, and A. Salminen, Analysis of laser cladding process parameter influence on the clad bead geometry, Weld. World, 61(2017), No. 5, p. 883.

    Article  CAS  Google Scholar 

  32. J.L. Chen, J. Li, R. Song, L.L. Bai, J.Z. Shao, and C.C. Qu, Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings, Opt. Laser Technol., 72(2015), p. 86.

    Article  CAS  Google Scholar 

  33. I. Hemmati, V. Ocelík, and J.T.M. De Hosson, The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surf. Coat. Technol., 205(2011), No. 21–22, p. 5235.

    Article  CAS  Google Scholar 

  34. T.F. Han, M. Xiao, J. Zhang, X.M. Feng, and Y.F. Shen, Laser cladding composite coating on mild steel using Ni-Cr-Ti-B4C powder, Surf. Eng., 2018.

  35. G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, and I. Manna, Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel, Surf. Coat. Technol., 258(2014), p. 1108.

    Article  CAS  Google Scholar 

  36. Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228.

    Article  CAS  Google Scholar 

  37. J. Yu, X. Lin, J.J. Wang, J. Chen, and W.D. Huang, Mechanics and energy analysis on molten pool spreading during laser solid forming, Appl. Surf. Sci., 256(2010), No. 14, p. 4612.

    Article  CAS  Google Scholar 

  38. S. Guo and C.T. Liu, Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Prog. Nat. Sci., 21(2011), No. 6, p. 433.

    Article  Google Scholar 

  39. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, and S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36(2005), No. 4, p. 881.

    Article  Google Scholar 

  40. Y. Zhang, T.F. Han, M. Xiao, and Y.F. Shen, Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nbx high-entropy alloy coating, Optik, 198(2019), art. No. 163316.

Download references

Acknowledgements

This study was supported by the Youth Program of National Natural Science Foundation of China (No. 51605473), and the National Key R&D Program of China (No. 2018YFB1105801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-fu Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, Tf., Xiao, M. et al. Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating. Int J Miner Metall Mater 27, 630–639 (2020). https://doi.org/10.1007/s12613-019-1958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1958-7

Keywords