Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Social Annotations to Generate Resource Descriptions in a Distributed Environment: Cooperative Multi-Agent Simulation on Query-Based Sampling

  • Research Note
  • Published:
The Review of Socionetwork Strategies Aims and scope Submit manuscript

Abstract

In distributed information retrieval, resource descriptions play a principal role in facilitating the task of other processes such as the resource selection process and the merging process. The previous approach for acquiring resource descriptions was based on different techniques to improve the retrieval process, but they have many limitations. In this paper, we describe a new approach for acquiring precise resource descriptions, based on social annotations available in the social bookmarking service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Callan, J., Lu, Z., Croft, B. (1995). Searching distributed collection with inference networks. In the Eighteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, WA, ACM-SIGIR’95, pp. 21–28.

  2. Balakrishnan, R., & Kambhampati, S. (2011). SourceRank: Relevance and trust assessment for deep web sources based on inter-source agreement. In: Proceedings of the 20th International Conference on World Wide Web (pp. 227–236). ACM.

  3. Arguello, J., Callan, J., Diaz F. (2009). Classification-based resource selection. In: Proceedings of CIKM. pp. 1277–1286.

  4. Puppin, D., Silvestri, F., Perego, R., & Baeza-Yates, R. (2010). Tuning the capacity of search engines: Load-driven routing and incremental caching to reduce and balance the load. ACM Transactions on Information Systems (TOIS), 28(2), 5.

    Article  Google Scholar 

  5. Callan, J., & Connell, M. (2001). Query-based sampling of text databases. ACM Transactions on Information Systems (TOIS), 19(2), 97–130.

    Article  Google Scholar 

  6. Arguello, J. (2011). Federated search for heterogeneous environments (Doctoral dissertation), Yahoo! Research.

  7. Chakravarthy, A.S., Haase, K.B. (1995). NetSerf: Using semantic knowledge to find Internet information archives. In: Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 4–11). ACM.

  8. Callan, J., Connell, M., Du, A. (1999). Automatic discovery of language models for text databases. In: ACM SIGMOD Record (Vol. 28, No. 2, pp. 479–490). ACM.

  9. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G. (2006). Information retrieval in folksonomies: Search and ranking. In: European Semantic Web conference (pp. 411–426). Berlin, Heidelberg: Springer.

  10. Mika, P. (2005). Ontologies are us: A unified model of social networks and semantics. In: In: Y. Gil, E. Motta, V. R Benjamins, M. A Musen (Eds.), The Semantic Web–ISWC 2005. Lecture Notes in Computer Science (vol. 3726, pp. 522–536). Berlin, Heidelberg: Springer.

  11. Baillie, M., Carman, M.J., Crestani, F. (2009). A topic-based measure of resource description quality for distributed information retrieval. In: M. Boughanem, C. Berrut, J. Mothe, C. Soule-Dupuy (Eds.), Advances in information retrieval, ECIR 2009. Lecture Notes in Computer Science (vol 5478, pp. 485–496). Berlin, Heidelberg: Springer.

  12. Noll, M.G., & Meinel, C. (2008). The metadata triumvirate: Social annotations, anchor texts and search queries. In: Web intelligence and intelligent agent technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on (Vol. 1, pp. 640–647). IEEE.

  13. Aliakbary, S., Abolhassani, H., Rahmani, H., Nobakht, B. (2009). Web page classification using social tags. In: Computational Science and Engineering, 2009. CSE’09. International Conference on (Vol. 4, pp. 588–593). IEEE.

  14. Heymann, P., Koutrika, G., Garcia-Molina, H. (2008). Can social bookmarking improve web search? In: Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 195–206). ACM.

  15. Vatturi, P.K., Geyer, W., Dugan, C., Muller, M., Brownholtz, B. (2008). Tag-based filtering for personalized bookmark recommendations. In: Proceedings of the 17th ACM conference on Information and knowledge management (pp. 1395–1396). ACM.

  16. Baillie, M., Azzopardi, L., Crestani, F. (2006). Towards better measures: Evaluation of estimated resource description quality for distributed IR. In: Proceedings of the 1st international conference on Scalable information systems (p. 41). ACM.

  17. Ipeirotis, P.G., & Gravano, L. (2004). When one sample is not enough: Improving text database selection using shrinkage. In: Proceedings of the 2004 ACM SIGMOD international conference on Management of data (pp. 767–778). ACM.

  18. Powell, A. L., & French, J. C. (2003). Comparing the performance of collection selection algorithms. ACM Transactions on Information Systems (TOIS), 21(4), 412–456.

    Article  Google Scholar 

  19. Saoud, Z., & Kechid, S. (2015). Acquiring resource descriptions using social annotations. In Proceedings of the ASE BigData & SocialInformatics 2015 (p. 23). ACM.

Download references

Acknowledgements

This paper is a revised and expanded version of the paper entitled, “Acquiring resource descriptions using social annotations”, presented at the Fifth ASE International Conference on Big Data, 2015, Taiwan [19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Saoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saoud, Z., Kechid, S., Saoud, M. et al. Exploiting Social Annotations to Generate Resource Descriptions in a Distributed Environment: Cooperative Multi-Agent Simulation on Query-Based Sampling. Rev Socionetwork Strat 11, 83–93 (2017). https://doi.org/10.1007/s12626-017-0001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12626-017-0001-6

Keywords