Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Charged current quasi elastic scattering of muon neutrino with nuclei

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present a study on the charge current quasi elastic scattering of \(\nu _\mu\) from nucleon and nuclei which gives a charged muon in the final state. To describe nuclei, the Fermi Gas model has been used with proposed Pauli suppression factor. The diffuseness parameter of the Fermi distribution has been obtained using experimental data. We also investigate different parametrizations for electric and magnetic Sach’s form factors of nucleons. Calculations have been made for CCQES total and differential cross-sections for the cases of \(\nu _{\mu }-N\), \(\nu _{\mu }-{^{12}}C\) and \(\nu _{\mu }-{^{56}}Fe\) scatterings and are compared with the data for different values of the axial mass. The present model gives excellent description of measured differential cross-section for all the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y Ashie et al [Super-Kamiokande Collaboration] Phys. Rev. D 71 112005 (2005).

  2. Y Takeuchi [Super-Kamiokande Collaboration] Nucl. Phys. Proc. Supl. 229 79 (2012).

  3. E Aliu et al [K2K Collaboration] Phys. Rev. Lett. 94 081802 (2005).

  4. M H Ahn et al [K2K Collaboration] Phys. Rev. Lett. 90 041801 (2003).

  5. M H Ahn et al [K2K Collaboration] Phys. Rev. D 74 072003 (2006).

  6. S Ahmed et al. [ICAL Collaboration] Pramana 88 79 (2017).

  7. J A Formaggio and G P Zeller Rev. Mod. Phys. 84 1307 (2012).

    Article  ADS  Google Scholar 

  8. K Saraswat, P Shukla, V Kumar and V Singh Phys. Rev. C 93 035504 (2016).

    Article  ADS  Google Scholar 

  9. S Fukuda et al [Super-Kamiokande Collaboration] Phys. Rev. Lett. 85 3999 (2000).

  10. D G Michael et al [MINOS Collaboration] Phys. Rev. Lett. 97 191801 (2006).

  11. P Adamson et al [MINOS Collaboration] Phys. Rev. D 81 072002 (2010).

  12. P Adamson et al [MINOS Collaboration] Phys. Rev. Lett. 107 021801 (2011).

  13. P Adamson et al [NOvA Collaboration] Phys. Rev. Lett. 116 151806 (2016),

  14. P Adamson et al [NOvA Collaboration] Phys. Rev. D 93 051104 (2016).

  15. P Adamson et al [NOvA Collaboration] Phys. Rev. Lett. 118 151802 (2017).

  16. C H Llewellyn Smith Phys. Rept. 3 261 (1972).

  17. R A Smith and E J Moniz Nucl. Phys. B 43 605 (1972) Erratum: Nucl. Phys. B 101 547 (1975).

  18. C Andreopoulos et al Nucl. Instrum. Meth. A 614 87 (2010).

  19. H Gallagher Nucl. Phys. Proc. Suppl. 112 188 (2002).

  20. Y Hayato Nucl. Phys. Proc. Suppl. 112 171 (2002).

  21. D Casper Nucl. Phys. Proc. Suppl. 112 161 (2002).

  22. A V Butkevich Phys. Rev. C 82 055501 (2010).

    Article  ADS  Google Scholar 

  23. K S Kuzmin, V V Lyubushkin and V A Naumov Eur. Phys. J. C 54 517 (2008).

    Article  ADS  Google Scholar 

  24. V Lyubushkin et al [NOMAD Collaboration] Eur. Phys. J. C 63 355 (2009).

  25. A A Aguilar-Arevalo et al [MiniBooNE Collaboration] Phys. Rev. Lett. 98 231801 (2007).

  26. A A Aguilar-Arevalo et al [MiniBooNE Collaboration] Phys. Rev. D 84 072005 (2011).

  27. C Juszczak, J T Sobczyk and J Zmuda Phys. Rev. C 82 045502 (2010).

    Article  ADS  Google Scholar 

  28. A A Aguilar-Arevalo et al [MiniBooNE Collaboration] Phys. Rev. D 82 092005 (2010).

  29. A A Aguilar-Arevalo et al [MiniBooNE Collaboration] Phys. Rev. D 81 092005 (2010).

  30. R Gran et al [K2K Collaboration] Phys. Rev. D 74 052002 (2006).

  31. L D Kolupaeva, K S Kuzmin, O N Petrova and I M Shandrov Mod. Phys. Lett. A 31 1650077 (2016).

    Article  ADS  Google Scholar 

  32. J E Amaro and E Ruiz Arriola Phys. Rev. D 93 053002 (2016).

    Article  ADS  Google Scholar 

  33. G D Megias, J E Amaro, M B Barbaro, J A Caballero, T W Donnelly and I Ruiz Simo Phys. Rev. D 94 093004 (2016) .

    Article  ADS  Google Scholar 

  34. J E Amaro, M B Barbaro, J A Caballero, T W Donnelly and C F Williamson Phys. Lett. B 696 151 (2011).

    Article  ADS  Google Scholar 

  35. J E Amaro, M B Barbaro, J A Caballero and T W Donnelly Phys. Rev. Lett. 108 152501 (2012).

    Article  ADS  Google Scholar 

  36. P Stoler Phys. Rept. 226 103 (1993).

  37. V Bernard, L Elouadrhiri and U G Meissner J. Phys. G 28 R1 (2002).

    Article  ADS  Google Scholar 

  38. H S Budd, A Bodek and J Arrington hep-ex/0308005.

  39. S Galster, H Klein, J Moritz, K H Schmidt, D Wegener and J Bleckwenn Nucl. Phys. B 32 221 (1971).

    Article  ADS  Google Scholar 

  40. H S Budd, A Bodek and J Arrington Nucl. Phys. Proc. Suppl. 139 90 (2005).

    Article  ADS  Google Scholar 

  41. R Bradford, A Bodek, H S Budd and J Arrington, Nucl. Phys. Proc. Suppl. 159 127 (2006).

    Article  ADS  Google Scholar 

  42. P E Bosted Phys. Rev. C 51 409 (1995).

    Article  ADS  Google Scholar 

  43. W M Alberico, S M Bilenky, C Giunti and K M Graczyk Phys. Rev. C 79 065204 (2009).

    Article  ADS  Google Scholar 

  44. A F Krutov and V E Troitsky, Eur. Phys. J. A 16 285 (2003).

    Article  ADS  Google Scholar 

  45. Amin A Leghrouz, M A Abu-Samreh and A M Saleh J Al-Aqsa Univ. 10(S.E.) (2006).

  46. E J Moniz, I Sick, R R Whitney, J R Ficenec, R D Kephart and W P Trower Phys. Rev. Lett. 26 445 (1971).

    Article  ADS  Google Scholar 

  47. F. Akbar, M. Rafi Alam, M. Sajjad Athar, S. Chauhan, S. K. Singh and F. Zaidi, Int. J. Mod. Phys. E 24 1550079 (2015).

    Article  ADS  Google Scholar 

  48. S Bonetti et al Nuovo Cim. A 38 260 (1977).

    Article  ADS  Google Scholar 

  49. M Pohl et al [GARGAMELLE NEUTRINO PROPANE Collaboration] Lett. Nuovo Cim. 26 332 (1979).

  50. G A Fiorentini et al [MINERvA Collaboration] Phys. Rev. Lett. 111 022502 (2013).

  51. W A Mann et al Phys. Rev. Lett. 31 844 (1973).

    Article  ADS  Google Scholar 

  52. S J Barish et al Phys. Rev. D 16 3103 (1977).

    Article  ADS  Google Scholar 

  53. N J Baker et al Phys. Rev. D 23 2499 (1981).

    Article  ADS  Google Scholar 

  54. T Kitagaki et al Phys. Rev. D 28 436 (1983).

    Article  ADS  Google Scholar 

  55. D Allasia et al Nucl. Phys. B 343 285 (1990).

    Article  ADS  Google Scholar 

  56. J Brunner et al [SKAT Collaboration] Z. Phys. C 45 551 (1990).

  57. R L Kustom, D E Lundquist, T B Novey, A Yokosawa and F Chilton Phys. Rev. Lett. 22 1014 (1969).

    Article  ADS  Google Scholar 

  58. N Suwonjandee FERMILAB-THESIS-2004-67 UMI-31-20857 University of Cincinnati.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, K., Shukla, P., Kumar, V. et al. Charged current quasi elastic scattering of muon neutrino with nuclei. Indian J Phys 92, 249–257 (2018). https://doi.org/10.1007/s12648-017-1093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1093-0

Keywords

PACS Nos.