Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Estimations of first 2+ energy states of even–even nuclei by using artificial neural networks

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The first excited 2+ energy states of nuclei give much substantial information related to the nuclear structure. All excited states of nuclei are shown regularities in spin, parity, and energy, including these levels. In the even–even nuclei, the first excited state is generally 2+, and the energy values of them increase as the closed shells are approached. The nuclei’s excited levels can be investigated using theoretical nuclear models, such as the nuclear shell model. In the present study, we have used artificial neural networks to determine the energies of the first 2+ states in the even–even nuclei in the nuclidic chart as a function of Z and N numbers for the first time. According to the results, the method is convenient for this goal. One can confidently use the method for predicting the first 2+ state energy values whose experimental values do not exist in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Goldhaber and A W Sunyar Phys. Rev. 83 906 (1951)

    Article  ADS  Google Scholar 

  2. P Stahelin and P Preiswerk Phys. Acta 24 623 (1951)

    Google Scholar 

  3. A De-Shalit and M Goldhaber Phys. Rev. 92 1211 (1953)

    Article  ADS  Google Scholar 

  4. G Scharfi-Goldhaber Phys. Rev. 90 587 (1953)

    Article  ADS  Google Scholar 

  5. K W Ford Phys. Rev. 90 29 (1953)

    Article  ADS  Google Scholar 

  6. P Preiswerk and P Stahelin Physica 18 1118 (1952)

    Article  ADS  Google Scholar 

  7. M G Mayer Phys. Rev. 74 235 (1948)

    Article  ADS  Google Scholar 

  8. S T Balyaev J. Exp. Theor. Phys. 12 968 (1961)

    Google Scholar 

  9. S Haykin Neural Networks: A Comprehensive Foundation. (Englewood Clifis: Prentice-Hall In.) (1999)

    MATH  Google Scholar 

  10. B Pritychenko et al Atomic Data Nucl. Data Tables 107 1 (2016)

    Article  ADS  Google Scholar 

  11. T Bayram et al Ann. Nucl. Energy 63 172 (2014)

    Article  Google Scholar 

  12. R Utama, J Piekarewicz and H B Prosper Phys. Rev. C 93 014311 (2016)

    Article  ADS  Google Scholar 

  13. S Akkoyun and T Bayram Int. J. Mod. Phys. E 23 1450064 (2014)

    Article  ADS  Google Scholar 

  14. S Akkoyun et al J. Phys. G 40 055106 (2013)

    Article  ADS  Google Scholar 

  15. R Utama et al J. Phys. G 43 114002 (2016)

    Article  ADS  Google Scholar 

  16. S Akkoyun et al Radiat. Phys. Chem. 96 186 (2014)

    Article  ADS  Google Scholar 

  17. U B Rodriguez et al J. Phys. G 46 115109 (2019)

    Article  ADS  Google Scholar 

  18. K Levenberg Quart. Appl. Math. 2 164 (1944)

    Article  MathSciNet  Google Scholar 

  19. D Marquardt SIAM J. Appl. Math. 11 431 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Akkoyun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkoyun, S., Kaya, H. & Torun, Y. Estimations of first 2+ energy states of even–even nuclei by using artificial neural networks. Indian J Phys 96, 1791–1797 (2022). https://doi.org/10.1007/s12648-021-02099-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02099-w

Keywords