Abstract
The oxidative damage of DNA is a compelling issue in molecular biophysics as it plays a vital role in the epigenetic control of gene expression and is believed to be associated with mutagenesis, carcinogenesis and aging. To understand the microscopic structural changes in physical properties of DNA and the resulting influence on its function due to oxidative damage of its nucleotide bases, we have conducted all-atom molecular dynamic simulations of double-stranded DNA (dsDNA) with its guanine bases being oxidized. The guanine bases are more prone to oxidative damage due to the lowest value of redox potential among all nucleobases. We have analyzed the local as well as global mechanical properties of native and oxidized dsDNA and explained those results by microscopic structural parameters and thermodynamic calculations. Our results show that the oxidative damage of dsDNA does not deform the Watson-Crick geometry; instead, the oxidized DNA structures are found to be better stabilized through electrostatic interactions. Moreover, oxidative damage changes the mechanical, helical and groove parameters of dsDNA. The persistence length, stretch modulus and torsional stiffness are found to be 48.87 nm, 1239.26 pN and 477.30 pN.nm\(^2\), respectively, for native dsDNA and these values are 61.31 nm, 659.91 pN and 407.79 pN.nm\(^2\), respectively, when all the guanine bases of the dsDNA are oxidized. Compared to the global mechanical properties, the changes in helical and groove properties are found to be more prominent, concentrated locally at the oxidation sites and causing the transition of the backbone conformations from BI to BII at the regions of oxidative damage.
Similar content being viewed by others
References
A R Poetsch, Comput. Struct. Biotechnol. J 18 207 (2020)
S Steenken, and S V Jovanovic, J. Am. Chem. Soc. 119 617 (1997).
P Diamantis, I Tavernelli, and U Rothlisberger, J. Chem. Theory Comput. 16 6690 (2020).
J M Berg, J L Tymoczko, and L Stryer, Biochemistry. 5th edition (W H Freeman; New York, 2002) Chap. 18
M S Cooke, M D Evans, M Dizdaroglu, and J Lunec, FASEB J. 17 1195 (2003).
D M Mutat Res. 275, 331 (1992 Sep).
A E Aust, and J F Eveleigh, Proc. Soc. Exp. Biol. Med. 222 246 (1999).
H Kasai, Genes, and Environ 38 (2016).
R P Koirala, R Pokhrel, P Baral, P B Tiwari, PP Chapagain, and N P Adhikari, Biol. Chem. 402 1203 (2021)
S Kumar, V Chinnusamy, and T Mohapatra, Front. Genet. 9 640 (2018)
B van Loon, E Markkanen, and U Hübscher, DNA Repair 9 604 (2010)
P Fortini, B Pascucci, E Parlanti, M D’Errico, V Simonelli, and E Dogliotti, Mutation Res./Fund. Molec. Mechan. Mutagen. 531 127 (2003)
V Van Ruyskensvelde, F Van Breusegem, and K Van Der Kelen, Free Radical Biol. Med. 122 181 (2018).
T Pfaffeneder, F Spada, M Wagner, et al. Nat. Chem. Biol. 10 574 (2014).
V Pastukh, J T Roberts, D W Clark, et al. Am J Physiol Lung Cell Mol Physiol. 309 L1367–L1375 (2015).
S Reuter, S C Gupta, M M Chaturvedi, and B B Aggarwal, Free Radical Biol. Med. 49 1603 (2010)
C A Massaad, and E Klann, Antioxid. Redox Signal. 14 2013 (2011)
T F Beckhauser, J Francis-Oliveira, and R D Pasquale, J. Exper. Neurosci. 10s1 JEN.S39887 (2016)
T T Ngo, J Yoo, Q Dai, et al. Nat. Commun. 7 10813 (2016)
J Peters, L Mogil, M McCauley, M Williams, and L Maher, Biophys. J. 107 448 (2014)
J P Peters, S P Yelgaonkar, S G Srivatsan, Y Tor, and L James Maher III Nucleic Acids Res. 41 10593 (2013)
K Liebl, and M Zacharias Nucleic Acids Res. 47 1132 (2018)
J H. Miller, C C P Fan-Chiang, T P Straatsma, and M A Kennedy J. Am. Chem. Soc. 125 6331 (2003)
M Kara, and M Zacharias Biophys. J .104 1089 (2013)
T Dršata, M Kara, M Zacharias, and F Lankaš J. Phys. Chem. B. 117 11617 (2013)
X Cheng, C Kelso, V Hornak, C de los Santos, A P Grollman, and C Simmerling J. American Chem. Soc. 127 13906 (2005)
T J Macke, and D A Case ACS Symposium Series; American Chem. Soci. 682 379 (1997)
D Case, I Ben-Shalom, S Brozell, D. Cerutti, T Cheatham III, V Cruzeiro, T Darden, R Duke, D Ghoreishi, M Gilson et al. Amber 2018: San francisco (2018)
D A Case et al. Amber 2014: San francisco (2014)
P Mark, and L Nilsson J. Phys. Chem. A. 105 9954 (2001)
W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, and M L Klein J. Chem. Phys. 79 926 (1983)
I S Joung, and T E Cheatham J. Phys. Chem. B. 112 9020 (2008)
R L Davidchack, R Handel, and M V Tretyakov J. Chem. Phys. 130 234101 (2009)
W F V. Gunsteren, and H J C. Berendsen Mol. Simul. 1 173 (1988)
H J Berendsen, J Postma, A D W F van Gunsteren, and J Haak J. Chem. Phys. 81 3684 (1984)
P H Hunenberger Adv. Polym. Sci. 173 105 (2005)
J P Ryckaert, G Ciccotti, and H J C Berendsen J. Comput. Phys. 23 327 (1977)
T Darden, D York, and L Pederse J. Chem. Phys. 98 10089 (1993)
S Naskar, and P K Maiti J. Mater. Chem. B 9 5102 (2021)
A Garai, D Ghoshdastidar, S Senapati, and P K Maiti J. Chem. Phys. 149 045104 (2018)
A Garai, S Saurabh, Y Lansac, and P K Maiti J. Phys. Chem. B 119 11146 (2015)
S Naskar, S Saurabh, Y H Jang, Y Lansac, and P K Maiti Soft Matter. 16 634 (2020)
P K. Maiti, T A. Pascal, N Vaidehi, J Heo, and W A Goddard, Biophys. J. 90 1463 (2006)
P K Maiti, T A Pascal, N Vaidehi, and I Goddard, A William Nucleic Acids Res. 32 6047 (2004)
S Mogurampelly, B Nandy, R R Netz, and P K Maiti, European Phys. J. E 36 68 (2013)
A Aggarwal, S Naskar, A K Sahoo, S Mogurampelly, A Garai, and P K Maiti Curr. Opin. Struct. Biol. 64 42 (2020)
S Naskar, M Gosika, H Joshi, and P K Maiti J. Phys. Chem. C 123 9461 (2019)
A K Mazur Phys. Rev. Lett. 98 218102 (2007)
H Joshi, A Kaushik, N C Seeman, and P K Maiti ACS Nano. 10 7780 (2016)
S Naskar, H Joshi, B Chakraborty, N C Seeman, and P K Maiti Nanoscale 11 14863 (2019)
E Skoruppa, M Laleman, S K Nomidis, and E Carlon J. Chem. Phys. 146 214902 (2017)
L. K, D. T, L. F, L. J, and Z. M, Nucleic Acids Res. 43 10143 (2015)
J H Liu, K Xi, X Zhang, L Bao, X Zhang, and Z J Tan Biophys. J. 117(1) 74 (2019)
L Bao, X Zhang, Y Z Shi, Y Y Wu, and Z J Tan Biophys. J. 112 1094 (2017)
Z Bryant, M D Stone, J Gore, S B Smith, N R Cozzarelli, and C Bustamante Nature. 424 338 (2003)
S K Nomidis, F Kriegel, W Vanderlinden, J Lipfert, and E Carlon Phys. Rev. Lett. 118 217801 (2017)
F Kriegel, N Ermann, R Forbes, D Dulin, N H Dekker, and J Lipfert Nucleic Acids Res. 45 5920 (2017)
A Marin-Gonzalez, J Vilhena, F Moreno-Herrero, and R Perez Phys. Rev. Lett. 122 048102 (2019)
X J Lu and W K Olson Nucleic Acids Res. 31 5108 (2003)
W Humphrey, A Dalke, and K Schulten J. Mol. Graph. 14 33 (1996)
D R Roe and T E Cheatham J. Chem. Theory Comput. 9 3084 (2013)
J Abels, F Moreno-Herrero, T van der Heijden, C Dekker, and N Dekker, Biophys. J. 88 2737 (2005)
P J Hagerman Annu. Rev. Biophys. Biomol. Struct. 26 139 (1997)
K M Kosikov, A A Gorin, V B Zhurkin, and W K Olson J. Mol. Biol. 289 1301 (1999)
R S Mathew-Fenn, R Das, and P A B Harbury, Science 322 446 (2008)
E Herrero-Galán, M E Fuentes-Perez, C Carrasco, J M Valpuesta, J L Carrascosa, F Moreno-Herrero, and J R Arias-Gonzalez J. Am. Chem. Soc. 135 122 (2013)
J Lipfert, G M. Skinner, J M. Keegstra, T Hensgens, T Jager, D Dulin, M Köber, Z Yu, S P Donkers, F C. Chou, R Das, and N H. Dekker Proc. Natl. Acad. Sci. 111 15408 (2014)
P S Ho and M Carter In DNA Replication, edited by H. Seligmann (IntechOpen, Rijeka, 2011) Chap. 1
P K Pingali, S Halder, D Mukherjee, S Basu, R Banerjee, D Choudhury, and D Bhattacharyya J. Comput. Aided Mol. Des. 28 851 (2014)
P S Pallan, P Lubini, M Bolli, and M Egli Nucleic Acids Res. 35 6611 (2007)
A Ghosh and M Bansal Acta Crystallogr. Sect. D 59 620 (2003)
M Trieb, C Rauch, B Wellenzohn, F Wibowo, T Loerting, and K R Liedl, J. Phys. Chem. B 108 2470 (2004)
H Ishida J. Biomol. Struct. Dyn. 19 839 (2002)
L J Maher Structure 14 1479 (2006)
R Padinhateeri and G Menon Biophys. J. 104 463 (2013)
B Heddi, C Oguey, C Lavelle, N Foloppe, and B Hartmann, Nucleic Acids Res. 38 1034 (2009)
S Mukherjee, S Kailasam, M Bansal, and D Bhattacharyya Biopolymers. 103 134 (2015)
R Lavery et al. Nucleic Acids Res. 38 299 (2009)
P Várnai, D Djuranovic, R Lavery, and B Hartmann Nucleic Acids Res. 30 5398 (2002)
G F Deleavey and M J Damha Chem. and biol 19 937 (2012)
N Foloppe and A D MacKerell J. Phys. Chem. B 103 10955 (1999)
A Madhumalar and M Bansal J. Biomol. Struct. Dyn. 23 13 (2005)
A Ben Imeddourene, A Elbahnsi, M Guéroult, C Oguey, N Foloppe, and B Hartmann PLoS Comput. Biol.11 1 (2015)
D Svozil, J Kalina, M Omelka, and B Schneider Nucleic Acids Res. 36 3690 (2008)
M Zgarbová, P Jureèka, F Lankaš, T E Cheatham, J Šponer, and M Otyepka J. Chem. Inf. Model. 57 275 (2017)
B Hartmann, D Piazzola, and R Lavery Nucleic Acids Res. 21 561 (1993)
B Heddi, N Foloppe, N Bouchemal, E Hantz, and B Hartmann J. Am. Chem. Soc. 128 9170 (2006)
T Dršata, A Pérez, M Orozco, A V Morozov, J Sponer, and F Lankaš J Chem Theory Comput. 9 707 (2013)
J J Hoppins, et al. PLOS ONE 11 1 (2016)
E Arunan, et al. Pure Appl. Chem. 83 1637 (2011)
Y H Jang, W A Goddard, K T Noyes, L C Sowers, S Hwang, and D S Chung Chem. Res. Toxicol. 15 1023 (2002)
C M Crenshaw, J E Wade, H Arthanari, D Frueh, B F Lane, and M E Núñez Biochemistry 50 8463 (2011)
A Jain, R Krishna Deepak, and R Sankararamakrishnan J. Struct. Biol. 187 49 (2014)
Acknowledgements
We thank TUE-CMS, IISc, Bangalore, funded by DST, for providing the CPU hours and DAE, India, for financial support. SN acknowledges IISc for the institute RA fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
There are no conflicts to declare.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Chhetri, K.B., Naskar, S. & Maiti, P.K. Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations. Indian J Phys 96, 2597–2611 (2022). https://doi.org/10.1007/s12648-022-02299-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12648-022-02299-y