Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sub-barrier fusion hindrance and absence of neutron transfer channels

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The sub-barrier fusion hindrance has been observed in the domain of very low energies of astrophysical relevance. The measured fusion cross sections can be well estimated by using formula obtained by folding a Gaussian function for barrier height distribution with the expression for classical fusion cross section for fixed barrier. The parameters of the formula vary smoothly implying its usage in estimating the excitation function. In the present work, the effects of deformation and transfer on fusion reactions have been studied and the absence of neutron transfer channels has been correlated to the hindrance in heavy-ion fusion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N Rowley, G R Satchler and P H Stelson Phys. Lett. BPhys. Lett. B 254 25 (1991)

    Article  ADS  Google Scholar 

  2. M Dasgupta, D J Hinde, N Rowley and A M Stefanini Annu. Rev. Nucl. Part. Sci. 48 401 (1998)

    Article  ADS  Google Scholar 

  3. G Wallerstein et al Rev. Mod. Phys. 69 995 (1997)

    Article  ADS  Google Scholar 

  4. V Singh, J Lahiri, P Roy Chowdhury and D N Basu Ind. J. Phys.https://doi.org/10.1007/s12648-022-02495-w (2022)

    Article  Google Scholar 

  5. J X Wei et al Phys. Rev. Lett. 67 3368 (1991)

    Article  ADS  Google Scholar 

  6. A M Stefanini et al Phys. Rev. Lett. 74 864 (1995)

    Article  ADS  Google Scholar 

  7. H Timmers et al Nucl. Phys. A 633 421 (1998)

    Article  ADS  Google Scholar 

  8. M Trotta et al Phys. Rev. C 65 011601(R) (2001)

    Article  ADS  Google Scholar 

  9. A M Stefanini et al Phys. Rev. C 73 034606 (2006)

    Article  ADS  Google Scholar 

  10. A M Stefanini et al Phys. Rev. C 76 014610 (2007)

    Article  ADS  Google Scholar 

  11. V Yu Denisov Phys. Rev. C 89 044604 (2014)

    Article  ADS  Google Scholar 

  12. V Yu Denisov and I Yu Sedykh Eur. Phys. J. A 55 153 (2019)

    Article  ADS  Google Scholar 

  13. K Siwek-Wilczyńska and J . Wilczyński Phys. Rev. C 69 024611 (2004)

    Article  ADS  Google Scholar 

  14. T Cap, K Siwek-Wilczyńska and J Wilczyński Phys. Rev. C 83 054602 (2011)

    Article  ADS  Google Scholar 

  15. G Montagnoli et al Phys. Rev. C 101 044608 (2020)

    Article  ADS  Google Scholar 

  16. G Montagnoli et al Phys. Rev. C 97 024610 (2018)

    Article  ADS  Google Scholar 

  17. A Shrivastava et al Phys. Lett. B 755 332 (2016)

    Article  ADS  Google Scholar 

  18. P W Wen et al Phys. Rev. C 103 054601 (2021)

    Article  ADS  Google Scholar 

  19. M Rashdan Phys. Rev. C 102 055804 (2020)

    Article  ADS  Google Scholar 

  20. W M Seif J. Phys. G 30 1231 (2004)

    Article  ADS  Google Scholar 

  21. N V Antonenko, E A Cherepanov, A K Nasirov, V P Permjakov and V V Volkov Phys. Lett. B 319 425 (1993)

    Article  ADS  Google Scholar 

  22. H Esbensen Nucl. Phys. A 352 147 (1981)

    Article  ADS  Google Scholar 

  23. G Audi, A H Wapstra and C Thibault Nucl. Phys. A 729 337 (2003)

    Article  ADS  Google Scholar 

  24. P Möller, J R Nix, W D Myers and W J Swiatecki At. Data Nucl. Data Tables 59 185 (1995)

    Article  ADS  Google Scholar 

  25. P Möller, A J Sierk, T Ichikawa and H Sagawa At. Data Nucl. Data Tables 109–110 1 (2016)

    Article  ADS  Google Scholar 

  26. S Raman, C W Nestor Jr and P Tikkanen At. Data Nucl. Data Tables 78 1 (2001)

    Article  ADS  Google Scholar 

  27. Debasis Atta and D N Basu Phys. Rev. C 90 064622 (2014)

    Article  ADS  Google Scholar 

  28. Kouichi Hagino and Noboru Takigawa Progress of Theoretical Physics 128 1061 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (DNB) acknowledges support from Science and Engineering Research Board, Department of Science and Technology, Government of India, through Grant No. CRG/2021/007333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Basu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Lahiri, J., Chowdhury, P.R. et al. Sub-barrier fusion hindrance and absence of neutron transfer channels. Indian J Phys 97, 3081–3085 (2023). https://doi.org/10.1007/s12648-023-02699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02699-8

Keywords