Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Penicillium roqueforti ATCC 10110 was cultivated in rice husk residue, to produce a multienzymatic extract, which was characterised for its potential biotechnological applications.

Methods

Optimisation of the fermentation conditions for the xylanase activity production (U/g) was evaluated by using a Doehlert-type experimental design.

Results

The optimum xylanase activity (at 32 °C/82 h), was 1.04 U/g, which represented a deviation of 3% from the theoretically optimised value predicted by the quadratic model (R2 = 0.92). The optimum conditions were observed at pH 7.0 and 35 °C. The xylanase activity was favoured, particularly, by the presence (1 M) of Co2+ and Cu2+ and the kinetic constants were determined (K m  = 7.22 mg/ml and v max  = 3.29 U/g). For the endoglucanase activity, it was not possible to adjust a quadratic model but maximal activities (2.37 ± 0.01 U/g) were obtained at 32 °C for 72 h. For this enzyme, the optimum conditions were pH 4.8 and 50 °C. Also, Co2+, Cu2+, acetone, ethanol and isopropanol increased the endoglucanase activity.

Conclusion

The substrate rice husk, without any additives, permitted the acquisition of xylanases and endoglucanases similar to those obtained from synthetic substrates, justifying its application as a substrate for solid-state fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asgher, M., Wahab, A., Bilal, M., Iqbal, H.M.I.: Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal. Agric. Biotechnol. (2016). doi:10.1016/j.bcab.2016.04.003

    Article  Google Scholar 

  2. Bilal, M., Asgher, M., Shahida, M., Bhatti, H.N.: Characteristic features and dye degrading capability of agar–agar gel immobilized manganese peroxidase. Int. J. Biol. Macromol. (2016). doi:10.1016/j.ijbiomac.2016.02.014

    Article  Google Scholar 

  3. Ajala, A.S., Gana, A.: Analysis of challenges facing rice processing in Nigeria. J. Food Process. (2015). doi:10.1155/2015/893673

    Article  Google Scholar 

  4. Saha, B., Cotta, M.: Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy (2008). doi:10.1016/j.biombioe.2008.01.014

    Article  Google Scholar 

  5. Cen, P., Xia, L.: Production of cellulase by solid-state fermentation. Adv. Biochem. Eng. Biotechnol. 65, 70–92 (1999)

    Google Scholar 

  6. Bilal, M., Asgher, M., Iqbal, H.M.N., Ramzan, M.: Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste Biomass Valor. (2017) doi:10.1007/s12649-017-9871-7

    Article  Google Scholar 

  7. Shraddha, S.R., Sehgal, S., Kamthania, M., Kumar, A.: Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. (2011). doi:10.4061/2011/217861

    Article  Google Scholar 

  8. Singhania, R.R., Patel, A.K., Soccol, C.R., Pandey, A.: Recent advances in solid-state fermentation. J. Biochem. Eng. (2009). doi:10.1016/j.bej.2008.10.019

    Article  Google Scholar 

  9. Pandey, A.: Solid-state fermentation. J. Biochem. Eng. (2003). doi:10.1016/S1369-703X(02)00121-3

    Article  Google Scholar 

  10. Santos, T.C., Cavalcanti, I.S., Bonomo, R.C.F., Santana, N.B., Franco, M.: Optimization of productions of cellulolytic enzymes by Aspergillus niger using residue of mango a substrate. Ciencia Rural (2011). doi:10.1590/S0103-84782011005000145

    Article  Google Scholar 

  11. Kalai, S., Anzala, L., Bensoussan, M., Dantigny, P.: Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia. Int J. Food Microbiol. (2016). doi:10.1016/j.ijfoodmicro.2016.03.024

    Article  Google Scholar 

  12. Coughlan, M.P., Hazlewood, G.: β-1,4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. (1993). doi:10.1111/j.1470-8744.1993.tb00244.x

    Article  Google Scholar 

  13. Subramaniyan, S., Prema, P.: Biotechnology of microbial xylanases: enzymology, molecular biology and application. Crit. Rev. Biotechnol. 22(1), 33–46 (2002)

    Article  Google Scholar 

  14. Camacho, N.A., Aguiar, O.G.: Production, purification and characterization of a low molecular mass xylanase from Aspergillus sp and it is application in bakery. Appl. Biochem. Biotechnol. (2003). doi:10.1385/ABAB:104:3:159

    Article  Google Scholar 

  15. Prade, R.A.: Xylanases from biology to biotechnology. Biotechnol. Genet. Eng. Rev. (1995). doi:10.1080/02648725.1996.10647925

    Article  Google Scholar 

  16. Hu, J., Arantes, V., Pribowo, A., Saddler, J.N.: The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol. Biofuels (2013). doi:10.1186/1754-6834-6-112

    Article  Google Scholar 

  17. Rodrigues, M.I., Iemma, A.F.: Experimental Design and Process Optimization. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  18. Mustafa, S.R., Husaini, A., Hipolito, C.N., Hussain, H., Suhaili, N.: Application of response surface methodology for optimizing process parameters in the production of amylase by Aspergillus flavus NSH9 under solid state fermentation. Braz. Arch. Biol. Biotechol. (2016). doi:10.1590/1678-4324-2016150632

    Article  Google Scholar 

  19. dos Santos, T.C., Gomes, D.P.P., Bonomo, R.C.F., Franco, M.: Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem. (2012). doi:10.1016/j.foodchem.2011.11.115

    Article  Google Scholar 

  20. Santos, T.C., Filho, G.A., Oliveira, A.C., Rocha, T.J.O., Machado, F.P.P., Bonomo, R.C.F., Mota, K.I.A., Franco, M.: Application of response surface methodology for producing cellulolytic enzymes by solid-state fermentation from the puple mombin (Spondias purpurea L.) Residue. Food Sci. Biotechnol. (2013). doi:10.1007/s10068-013-0001-4

    Article  Google Scholar 

  21. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. (1959). doi:10.1021/ac60147a030

    Article  Google Scholar 

  22. Silva, L.A.O., Terrasan, C.R.F., Carmona, E.C.: Purification and characterization of xylanases from Trichoderma inhamatum. Electron. J. Biotechnol. (2015). doi:10.1016/j.ejbt.2015.06.001

    Article  Google Scholar 

  23. Masutti, D.C., Borgognone, A., Setti, L.: Production of enzymes from rice husks and wheat straw in solid state fermentation. Chem. Eng. Trans. (2012). doi:10.3303/CET1227023

    Article  Google Scholar 

  24. Arulanandham, T.V., Palaniswamy, M.: Production of xylanase by Penicillium frequentans isolated from litter soil using paddy straw as substrate by solid state fermentation. World J. Pharm. Pharm. Sci. (2016). doi:10.20959/wjpps201610-7763

    Article  Google Scholar 

  25. Hedge, A., Ramesh, C.: Isolation and screening of fungi for the production of xylanase using solid-state fermentation from Sirsi region of Western Ghats of Karnataka, India. Int. J. Microbiol. (2016). doi:10.20546/ijcmas.2016.502.062

    Article  Google Scholar 

  26. Pericin, D., Madarev-Popovic, S., Radulovi-Popovic L., Skrinjar M.: Evaluate of pumpkin oil cake as substrate for the cellulase production by Penicillium roqueforti in solid state fermentation. Rom. Biotechnol. Lett. 13(4), 3815–3820 (2008)

    Google Scholar 

  27. Khandeparkar, R.D.S., Bhosle, N.B.: Purification and characterization of Thermoalkalophilic xylanase isolated from the Enterobacter sp MTCC 5112. Res. Microbiol. (2006). doi:10.1016/j.resmic.2005.12.001

    Article  Google Scholar 

  28. Knob, A., Carmona, C.C.: Xylanase production by Penicillium sclerotiorum and its characterization. World Appl. Sci. J. 4(2), 277–283 (2008)

    Google Scholar 

  29. Terrasan, C.R.F., Guisan, J.M., Carmona, E.C.: Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electron. J. Biotechnol. (2016). doi:10.1016/j.ejbt.2016.08.001

    Article  Google Scholar 

  30. Querido, A.L.S., Coelho, J.L.C., Araújo, E.F., Chaves-Alves V.M.: Partial purification and characterization of xylanase produced by Penicillium expansum. Braz. Arch. Biol. Technol. (2006) doi:10.1590/S1516-89132006000400016

    Article  Google Scholar 

  31. Saha, S.P., Ghosh, S.: Optimization of xylanase production by Penicillium citrinum xym2 and application in saccharification of agro-residues. Biocatal. Agric. Biotechnol. (2014). doi:10.1016/j.bcab.2014.03.003

    Article  Google Scholar 

  32. Boonrung, S., Katekaew, S., Mongkolthanaruk, W., Aimi, T., Boonlue, S.: Purification and characterization of low molecular weight extreme alkaline xylanase from the thermophilic fungus Myceliophthora thermophila BF1-7. Myconscience (2016). doi:10.1016/j.myc.2016.07.003

    Article  Google Scholar 

  33. Silva, V.C.T., Coto, A.L.S., Souza, R.C., Neves, M.B.S., Gomes, E., Bonilla-Rodriguez, G.O.: Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungus Myceliophthora heterothallica F.2.1.4. obtained by solid-state and submerged cultivation. Biochem. Res. Int. (2016). doi:10.1155/2016/9781216.

    Article  Google Scholar 

  34. Azzeddine, B., Abdelaziz, M., Estelle, C., Mouloud, K., Nawel, B., Nabila, B., Francis, D., Said, B.: Optimization and partial characterization of endoglucanase produced by Streptomyces sp. B-png23. Arch. Biol. Sci. (2013). doi:10.2298/abs1302549a

    Article  Google Scholar 

  35. Lin, L., Liu, X., Zhou, Y., Guan, L., He, J., Huang, W.: A novel pH-stable, endoglucanase (JqCel5A) isolated from a salt-lake microorganism, Jonesia quinghaiensis. Electron. J. Biotechnol. (2016). doi:10.1016/j.ejbt.2016.09.004

    Article  Google Scholar 

  36. Das, A., Ghosh, U., Mohapatra, P.K.D., Pati, B.R., Mondal, K.C.: Study on thermodynamics and adsorption kinetics of purified endoglucanase (Endoglucanases) from Penicillium notatum NCIM NO-923 produced under mixed solid-state fermentation of waste cabbage and Bagasse. Braz. J. Microbiol. (2012). doi:10.1590/S1517-83822012000300037

    Article  Google Scholar 

  37. Huang, S., Deng, G., Yang, Y., Wu, Z., Wu, L.: Optimization of Endoglucanase production from a novel bacterial isolate, Arthrobacter sp. HPG166 and characterization of its properties. Braz. Arch. Biol. Technol. (2015). doi:10.1590/S1516-89132015050256

    Article  Google Scholar 

  38. Boonchuay, P., Takenaka, S., Kuntiya, A., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Chaiyaso, T.: Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. J. Mol. Catal. B (2016). doi:10.1016/j.molcatb.2016.03.014

    Article  Google Scholar 

  39. Asgher, M., Ramzan, M., Bilal, M.: Purification and characterization of manganese peroxidases from native and mutant Trametes versicolor IBL-04. Chin. J. Catal. 37, 561–570, (2016). doi:10.1016/S1872-2067(15)61044-0

    Article  Google Scholar 

  40. Guan, G.Q., Zhao, P.X., Zhao, J., Wang, M.J., Huo, S.H., Cui, F.J., Jiang, J.X.: Production and partial characterization of an alkaline xylanase from a novel fungus Cladosporium oxysporum. BioMed Res. Int. (2016). doi:10.1155/2016/4575024

    Article  Google Scholar 

  41. Burgess, R.R.: Protein precipitation techniques. Methods Enzymol. (2009). doi:10.1016/S0076-6879(09)63020-2

    Article  Google Scholar 

  42. Moteshafi, H., Hashemi, M., Mousavi, S.M., Mousivand, M.: Characterization of produced xylanase by Bacillus subtilis D3d newly isolated from apricot phyllosphere and its potential in pre-digestion of BSG. J. Ind. Eng. Chem. (2016). doi:10.1016/j.jiec.2016.03.036

    Article  Google Scholar 

  43. Sharma, P., Woldesenbet, F., Gupta, N.: Statistical optimization of the production of a cellulase-free, thermoalkali-stable, salt- and solvent-tolerant xylanase from Bacillus halodurans by solid-state fermentation. Arch. Appl. Sci. Res. 4(1), 524–535 (2012)

    Google Scholar 

  44. Sorgatto, M., Guimarães, N.C.A., Zanoelo, F.F., Marques, M.R., Peixoto-Nogueira, S.C., Giannesi, G.G.: Purification and characterization of an extracellular xylanase produced by the endophytic fungus Aspergillus terreus grown in submerged fermentation. Afri. J. Biotechnol. (2012). doi:10.5897/AJB11.2686

    Article  Google Scholar 

  45. Sanghvi, G., Jivrajani, M., Patel, N., Jivrajani, H., Bhaskara, G.B., Patel, S.: Purification and characterization of haloalkaline, organic solvent stable xylanase from newly isolated halophilic bacterium-OKH. Int. Sch. Res. Not. (2014). doi:10.1155/2014/198251

    Article  Google Scholar 

  46. Pol, D., Laxman, R.S., Rao, M.: Purification and biochemical characterization of endoglucanase from Penicillium pinophilum MS 20. Indian J. Biochem. Biophys. 49(3), 189–194 (2012)

    Google Scholar 

  47. Sadhu, S., Saha, P., Ken, S.K., Mayilraj, S., Maiti, T.K.: Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. Springer Plus (2013). doi:10.1186/2193-1801-2-10

    Article  Google Scholar 

  48. Liao, H., Zheng, H., Li, S., Wei, Z., Mei, X., Ma, H., Shen, Q., Xu, Y.: Functional diversity and properties of multiple xylanases from Penicillium oxalicum GZ-2. Sci. Rep. (2015). doi:10.1038/srep12631

    Article  Google Scholar 

  49. Chutani, P., Sharma, K.K.: Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohydr. Polym. (2015). doi:10.1016/j.carbpol.2015.03.053

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Banco do Nordeste do Brasil (BNB, Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for their important financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, G.L., dos Santos Reis, N., Silva, T.P. et al. Production and Characterisation of Xylanase and Endoglucanases Produced by Penicillium roqueforti ATCC 10110 Through the Solid-State Fermentation of Rice Husk Residue. Waste Biomass Valor 9, 2061–2069 (2018). https://doi.org/10.1007/s12649-017-9994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9994-x

Keywords