Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Visualization of coalescence behavior of two bubbles with smoothness constraint

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

A new method based on 2D contour curve fitting and 3D rotation surface generation to visualize the coalescence phenomenon of two bubbles in static water is presented. First, some contour points are extracted from key frame images in different coalescence stages of two bubbles. Second, those points are fitted using a new approach combining piecewise curve fitting with a smoothing constraint. Third, a family of transition functions is proposed to deal with continuous changes of contour curves in the process of coalescence. Finally, we use those contours to generate dynamical 3D rotation surfaces and achieve the continuous deformation visualization of two-bubble coalescence.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bandara UC, Yapa PD (2011) Bubble sizes, breakup, and coalescence in deepwater gas/oil plumes. J Hydraul Eng 137(7):729–738

    Article  Google Scholar 

  • Belov IV, Prokolov EV (1972) Speed and shape of air bubbles in water. J Appl Mech Tech Phys 9(3):299–302

    Article  Google Scholar 

  • Bing N, Tao Z, Ni HQ, Luo ZG (2017) Mechanism and simulation of droplet coalescence in molten steel. Int J Miner Metall Mater 24(11):1251–1259

    Article  Google Scholar 

  • Chen R, Yu HW, Zhu L, Lee T, Patil RM (2016) Spatial and temporal scaling of unequal microbubble coalescence. AICHE J 63(4):1441–1450

    Article  Google Scholar 

  • Colombo M, Fairweather M (2016) Rans simulation of bubble coalescence and break-up in bubbly two-phase flows. Chem Eng Sci 146:207–225

    Article  Google Scholar 

  • Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods. J Comput Phys 298(C):280–304

    Article  MathSciNet  MATH  Google Scholar 

  • Gebauer F, Hlawitschka MW, Bart HJ (2016) CFD aided investigation of single droplet coalescence. Chin J Chem Eng 24(2):249–252

    Article  Google Scholar 

  • Grace JR, Clift R (2010) Coalescence of bubble pairs in a three dimensional fluidized bed. Can J Chem Eng 52(3):417–419

    Article  Google Scholar 

  • Gross M, Steinbach I, Raabe D, Varnik F (2013) Viscous coalescence of droplets: a lattice Boltzmann study. Phys Fluids 25(5):052101. https://doi.org/10.1063/1.4803178

    Article  Google Scholar 

  • Han R, Li S, Zhang AM, Wang QX (2016) Modelling for three dimensional coalescence of two bubbles. Phys. Fluids 28(6):062104

    Article  Google Scholar 

  • Hong Y, Park CC, Hu YT, Leal LG (2001) The coalescene of two equal-sized drops in a two-dimensional linear flow. Phys. Fluids 13(5):1087–1106

    Article  MATH  Google Scholar 

  • Ishiyama Y, Funaoka C, Kubo F, Takahashi H, Tomita F (1992) Labeling board based on boundary tracking. In: Proceedings of the 11th IAPR international conference on pattern recognition. Vol. IV. Conference D: Architectures for Vision and Pattern Recognition, pp 34–38

  • Keplinger O, Shevchenko N, Eckert S (2018) Visualization of bubble coalescence in bubble chains rising in a liquid metal. Int J Multiph Flow 105:159–169

    Article  Google Scholar 

  • Liu Z, Herman C, Mewes D (2007) Visualization of bubble detachment and coalescence under the influence of a nonuniform electric field. Exp Therm Fluid Sci 31(2):151–163

    Article  Google Scholar 

  • Ni NI, Zhongguo S, Xiao C, Guang XI (2017) Numerical simulation of moving particle semi-implicit method for single-film bubbles coalescence and connection. J Xi’an Jiaotong Univ 51(12):156–162

    Google Scholar 

  • Nielsen MB, Söderström A, Bridson R (2013) Synthesizing waves from animated height fields. ACM Trans Graph 32(1):2:1–2:9

    Article  MATH  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Pérez-Muñuzuri V, Garaboa-Paz D (2016) Mixing of spherical bubbles with time-dependent radius in incompressible flows. Phys Rev E 93(2–1):023107

    Article  Google Scholar 

  • Pucci G, Harris DM, Bush JWM (2015) Partial coalescence of soap bubbles. Phys Fluids 27(6):105–203

    Article  Google Scholar 

  • Ruetsch GR, Meiburg E (1993) On the motion of small spherical bubbles in two-dimensional vortical flows. Phys Fluids A Fluid Dyn 5(10):2326–2341

    Article  MATH  Google Scholar 

  • Runge C (1901) Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Zeitschrift für Mathematik und Physik 46:224–243

    MATH  Google Scholar 

  • Singh R, Wei S (2007) Three-dimensional adaptive cartesian grid method with conservative interface restructuring and reconstruction. J Comput Phys 224(1):150–167

    Article  MathSciNet  MATH  Google Scholar 

  • Szymczak WG, Means SL, Rogers JC (2004) Computations of bubble formation and pulsations generated by impacting cylindrical water jets. J Eng Math 48(3–4):375–389. https://doi.org/10.1023/B:engi.0000018169.93608.42

    Article  MATH  Google Scholar 

  • Xia X, He C, Zhang P (2019) Universality in the viscous-to-inertial coalescence of liquid droplets. Proc Natl Acad Sci 116(47):23467–23472. https://doi.org/10.1073/pnas.1910711116

    Article  Google Scholar 

  • Zelenka C (2014) Gas bubble shape measurement and analysis. In: Jiang X, Hornegger J, Koch R (eds) Pattern Recognition. Springer, Cham, pp 743–749

    Google Scholar 

  • Zhang S (2006) Three dimensional numerical simulation of dynamical property of bubbles. PhD thesis, Hohai University

  • Zhao JF, Li J, Yan N, Wang SF (2009) Bubble behavior and heat transfer in quasi-steady pool boiling in microgravity. Microgravity Sci Technol 21(1 Supplement):175–183

    Article  Google Scholar 

  • Zhao ZX, Niu JH, Huang L, Wang HR (2015) Simulation of the motion of two bubbles in aluminum foams produced process by using level set method. Appl Mech Mater 757:13–17

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China with project Nos. 51672028, 61571046 and 61372190. The authors are grateful to Liuhong Luo, Xiaochun Wang, Rui Gong, Shengpeng Mu, Shaodi Ge and Zuyun Jiang for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 3353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, H. Visualization of coalescence behavior of two bubbles with smoothness constraint. J Vis 23, 475–490 (2020). https://doi.org/10.1007/s12650-020-00641-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00641-2

Keywords