Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

TrammelGraph: visual graph abstraction for comparison

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Network data, represented by graph-based structures, are used in a variety of applications such as social networks and disease complication networks. A crucial task in many applications is graph comparison, with the goal of understanding the structural differences between pairs of graphs. However, traditional graph visualization techniques, node-link diagrams, and adjacency matrices are not intrinsically designed for comparison tasks. In this paper, we present TrammelGraph, a novel visual graph abstraction technique for graph comparison. TrammelGraph uses graph embedding and node alignment methods to create a map-based representation that eliminates visual clutter and thus facilities graph comparison. The design results in a planar graph with a regularly-spaced, crossing-free layout that helps users identify high-level topological information for graph comparison tasks. To evaluate the effectiveness of TrammelGraph, we conducted a controlled user study with 20 participants that compares TrammelGraph with node-link diagrams and adjacency matrices on a variety of common graph comparison tasks. We also conducted an expert interview with a physician using the MIMIC dataset. Both the quantitative and qualitative results from the study and interview highlighted the key strengths of TrammelGraph as a tool for visual graph comparison.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12(12):2032–2045

    Article  Google Scholar 

  • Alper B, Bach B, Henry Riche N, Isenberg T, Fekete J-D (2013) Weighted graph comparison techniques for brain connectivity analysis. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 483–492

  • Andrews K, Wohlfahrt M, Wurzinger G (2009) Visual graph comparison. In: IEEE international conference information visualisation, pp 62–67

  • Bach B, Pietriga E, Fekete J-D (2013) Graphdiaries: animated transitions andtemporal navigation for dynamic networks. IEEE TVCG 20(5):740–754

    Google Scholar 

  • Battista GD, Eades P, Tamassia R, Tollis IG (1998) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Behrisch M, Bach B, Henry Riche N, Schreck T, Fekete J-D (2016) Matrix reordering methods for table and network visualization. In: Computer graphics forum, vol 35. Wiley Online Library, pp 693–716

  • Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2013) Network similarity via multiple social theories. In: Proceedings of the IEEE/ACM international conference on advances in social networks analysis and mining, pp 1439–1440

  • Biondi B, Kahaly GJ, Robertson RP (2019) Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr Rev 40(3):789–824

    Article  Google Scholar 

  • Cao N, Lin Y-R, Gotz D (2015) Untangle map: visual analysis of probabilistic multi-label data. IEEE TVCG 22(2):1149–1163

    Google Scholar 

  • Chen W, Guo F, Han D, Pan J, Nie X, Xia J, Zhang X (2019) Structure-based suggestive exploration: a new approach for effective exploration of large networks. IEEE TVCG 25(1):555–565

    Google Scholar 

  • Collberg C, Kobourov S, Nagra J, Pitts J, Wampler K (2003) A system for graph-based visualization of the evolution of software. In: Proceedings of the ACM symposium on software visualization, pp 77–86

  • De Boer IH, Bangalore S, Benetos A, Davis AM, Michos ED, Muntner P, Rossing P, Zoungas S, Bakris G (2017) Diabetes and hypertension: a position statement by the American diabetes association. Diabetes Care 40(9):1273–1284

    Article  Google Scholar 

  • Díaz J, Petit J, Serna M (2002) A survey of graph layout problems. ACM Comput Surv 34(3):313–356

    Article  Google Scholar 

  • Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, Kathiresan S (2017) Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317(6):626–634

    Article  Google Scholar 

  • Freire M, Plaisant C, Shneiderman B, Golbeck J (2010) Manynets: an interface for multiple network analysis and visualization. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 213–222

  • Gansner ER, Koren Y, North S (2004) Graph drawing by stress majorization. In: International symposium on graph drawing. Springer, pp 239–250

  • Ghoniem M, Fekete J-D, Castagliola P (2004) A comparison of the readability of graphs using node-link and matrix-based representations. In: IEEE symposium on information visualization, pp 17–24

  • Gleicher M (2017) Considerations for visualizing comparison. IEEE TVCG 24(1):413–423

    Google Scholar 

  • Gleicher M, Albers D, Walker R, Jusufi I, Hansen CD, Roberts JC (2011) Visual comparison for information visualization. Inf Visual 10(4):289–309

    Article  Google Scholar 

  • Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the ACM international conference on knowledge discovery and data mining, pp 855–864

  • Hascoët M, Dragicevic P (2012) Interactive graph matching and visual comparison of graphs and clustered graphs. In: Proceedings of the international working conference on advanced visual interfaces. ACM, pp 522–529

  • Haussler D (1999) Convolution kernels on discrete structures. Technical report, Technical report, Department of Computer Science, University of California

  • Herman I, Melançon G, Marshall MS (2000) Graph visualization and navigation in information visualization: a survey. IEEE TVCG 6(1):24–43

    Google Scholar 

  • Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3:160035

    Article  Google Scholar 

  • Kairam S, MacLean D, Savva M, Heer J (2012) Graphprism: compact visualization of network structure. In: Proceedings of the international working conference on advanced visual interfaces, pp 498–505

  • Koop D, Freire J, Silva CT (2013) Visual summaries for graph collections. In: IEEE pacific visualization symposium, pp 57–64

  • Kriege NM, Johansson FD, Morris C (2019) A survey on graph kernels. arXiv:1903.11835

  • Lee B, Plaisant C, Parr CS, Fekete J-D, Henry N (2006) Task taxonomy for graph visualization. In: Proceedings of the 2006 ACM AVI workshop on beyond time and errors: novel evaluation methods for information visualization, pp 1–5

  • Macindoe O, Richards W (2010) Graph comparison using fine structure analysis. In: IEEE international conference on social computing, pp 193–200

  • Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings 18th IEEE international conference on data engineering, pp 117–128

  • Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv:1301.3781

  • Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

    Article  Google Scholar 

  • Nikolentzos G, Meladianos P, Vazirgiannis M (2017) Matching node embeddings for graph similarity. In: AAAI conference on artificial intelligence

  • Raad E, Chbeir R, Dipanda A (2010) User profile matching in social networks. In: IEEE international conference on network-based information systems, pp 297–304

  • Sah P, Singh LO, Clauset A, Bansal S (2014) Exploring community structure in biological networks with random graphs. BMC Bioinform 15(1):220

    Article  Google Scholar 

  • Saket B, Simonetto P, Kobourov S, Börner K (2014) Node, node-link, and node-link-group diagrams: an evaluation. IEEE TVCG 20(12):2231–2240

    Google Scholar 

  • Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ et al (2003) Kidney disease as a risk factor for development of cardiovascular disease: a statement from the american heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108(17):2154–2169

    Article  Google Scholar 

  • Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt K (2009) Efficient graphlet kernels for large graph comparison. In: Artificial intelligence and statistics, pp 488–495

  • Worsley KJ, Chen J-I, Lerch J, Evans AC (2005) Comparing functional connectivity via thresholding correlations and singular value decomposition. Philos Trans R Soc B Biol Sci 360(1457):913–920

    Article  Google Scholar 

  • Yoghourdjian V, Dwyer T, Klein K, Marriott K, Wybrow M (2018) Graph thumbnails: identifying and comparing multiple graphs at a glance. IEEE TVCG 24(12):3081–3095

    Google Scholar 

  • Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L (2019) A survey of visualization for smart manufacturing. J Visual 22(2):419–435

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Fundamental Research Funds for the Central Universities in China, Shanghai Summit Discipline in Design (Grant No. DA19103), the National Natural Science Foundation of China (Grant No. 61802283), and the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1461500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 26763 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z., Chen, N., Shi, Y. et al. TrammelGraph: visual graph abstraction for comparison. J Vis 24, 365–379 (2021). https://doi.org/10.1007/s12650-020-00706-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00706-2

Keywords