Abstract
Statistical data summarization can significantly reduce the data storage footprint for large-scale scientific simulations while maintaining data accuracy. However, the high-resolution reconstructed data causes a memory bottleneck in graphics processing unit (GPU)-based post-hoc visualization using limited graphics memory. In this paper, we propose a statistical summarization model-driven adaptive data reconstruction method for large-scale statistical visualization on GPUs. It uses the spatial Gaussian mixture model to iteratively compute the Shannon entropy on multi-level grids, driving an adaptive mesh refinement that retains complex physical features. A graphics shader-based data reconstruction algorithm is used to efficiently generate the scalar field on the adaptive grid while seamlessly integrating with GPU-accelerated rendering algorithms. The experimental tests used data generated by five real-world scientific simulations with a maximum grid resolution of 134 million. Qualitative and quantitative analysis results show that our method can achieve efficient and high-quality reconstruction of the statistical summary data on a GPU, and the maximum data compression ratio is close to two orders of magnitude.
Graphical abstract
Similar content being viewed by others
References
Bai ZH, Zhou ZG, Yang RF, Tao YB, Lin H (2015) Time-varying volume visualization and feature tracking on asymmetric gaussian function. J Image Gr 20(4):0576–0584
Bailey M (2016) Opengl compute shaders. Oregon State University
Ballester-Ripoll R, Steiner D, Pajarola R (2017) Multiresolution volume filtering in the tensor compressed domain. IEEE Trans Visual Comput Gr 24(10):2714–2727
Balsa Rodríguez M, Gobbetti E, Iglesias Guitian JA, Makhinya M, Marton F, Pajarola R, Suter SK (2014) State-of-the-art in compressed gpu-based direct volume rendering. In Computer Graphics Forum, vol 33, pp 77–100. Wiley Online Library https://doi.org/10.1111/cgf.12280
Berger MJ, Oliger J (1984) Adaptive mesh refinement for hyperbolic partial differential equations. J Comput Phys 53(3):484–512
Burtscher M, Ratanaworabhan P (2008) Fpc: a high-speed compressor for double-precision floating-point data. IEEE Trans Comput 58(1):18–31
Calhoun D, Burstedde C (2017) Forestclaw: a parallel algorithm for patch-based adaptive mesh refinement on a forest of quadtrees. arXiv preprint arXiv:1703.03116
Hank C, Eric B, Brad W, Jeremy M, Sean A, David P, Kathleen B, Mark M, Gunther HW, Hari K, Thomas F, Allen S, Christoph G, Bethel EW, David C, Oliver R, Marc D, Jean F, Paul N. Visit: An end-user tool for visualizing and analyzing very large data. Accessed 1 Nov 2012 https://www.osti.gov/biblio/1170761
Claggett S, Azimi S, Burtscher M (2018) Spdp: an automatically synthesized lossless compression algorithm for floating-point data. In: 2018 data compression conference, pp 335–344. IEEE
Crassin Cyril, Neyret Fabrice, Lefebvre Sylvain, Eisemann Elmar (2009) Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp 15–22
Deering M (1995) Geometry compression. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp 13–20
Dutta S, Chen C-M, Heinlein G, Shen H-W, Chen J-P (2016) In situ distribution guided analysis and visualization of transonic jet engine simulations. IEEE Trans Visual Comput Gr 23(1):811–820
Dutta S, Shen H-W (2015) Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans Visual Comput Gr 22(1):837–846
Engel Klaus (2011) Cera-tvr: a framework for interactive high-quality teravoxel volume visualization on standard pcs. In 2011 IEEE symposium on large data analysis and visualization. IEEE, pp 123–124
Ginsburg D, Purnomo B, Shreiner D, Munshi A (2014) OpenGL ES 3.0 Programming Guide. OpenGL. Pearson Education. https://books.google.com/books?id=7qT0AgAAQBAJ
Guthe S, Strasser W (2004) Advanced techniques for high-quality multi-resolution volume rendering. Comput Gr 28(1):51–58
Hadwiger M, Beyer J, Jeong W-K, Pfister H (2012) Interactive volume exploration of petascale microscopy data streams using a visualization-driven virtual memory approach. IEEE Trans Visual Comput Gr 18(12):2285–2294
Harel G, Lekien J-B, Pébaÿ PP (2017) Visualization and analysis of large-scale, tree-based, adaptive mesh refinement simulations with arbitrary rectilinear geometry. arXiv preprint arXiv:1702.04852
Hoang D, Klacansky P, Bhatia H, Bremer P-T, Lindstrom P, Pascucci V (2018) A study of the trade-off between reducing precision and reducing resolution for data analysis and visualization. IEEE Trans Visual Comput Gr 25(1):1193–1203
Händel P (2018) Understanding normalized mean squared error in power amplifier linearization. IEEE Microwave Wirel Compon Lett 28(11):1047–1049
Khodakovsky A, Schröder P, Sweldens W (2000) Progressive geometry compression. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pp 271–278
Khronos Group, Inc. (2019) The OpenGL® Shading Language, Version 4.60.7. https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
Khronos Group, Inc. (2019) The OpenGL® Graphics System: A Specification (Version 4.6 (Core Profile)). https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf
Kwan KC, Xuemiao X, Wan L, Wong T-T, Pang W-M (2017) Packing vertex data into hardware-decompressible textures. IEEE Trans Visual Comput Gr 24(5):1705–1716
Lakshminarasimhan S, Shah N, Ethier S, Seung-Hoe K, Chang C-S, Klasky S, Latham R, Ross R, Samatova NF (2013) Isabela for effective in situ compression of scientific data. Concurr Comput Pract Exp 25(4):524–540
Levoy M (1988) Display of surfaces from volume data. IEEE Comput Gr Appl 8(3):29–37
Liu Susen, Levine JA, Bremer P-T, Pascucci V (2012) Gaussian mixture model based volume visualization. In: IEEE symposium on large data analysis and visualization (LDAV), pp 73–77. IEEE
Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers, pp 457–462
Luebke D, Reddy M, Cohen J D, Varshney A, Watson B, Huebner R (2003) Level of detail for 3D graphics. Morgan Kaufmann
Merhav N, Bhaskaran V (1997) Fast algorithms for DCT-domain image downsampling and for inverse motion compensation. IEEE Trans Circuits Syst Video Technol 7(3):468–476
Pajarola R, Rossignac J (2000) Compressed progressive meshes. IEEE Trans Visual Comput Gr 6(1):79–93
Patchett J, Gisler G (2017) Deep water impact ensemble data set. https://sciviscontest2018.org/wp-content/uploads/sites/19/2017/09/DeepWaterImpactEnsembleDataSet_Revision1.pdf.
Roche Antoine, Dubois Jérôme (2020) Evaluation of mesh compression and GPU ray casting for tree based AMR data in vtk. In: EuroVis (Posters), pp 5–7
Sara U, Akter M, Uddin MS (2019) Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. J Comput Commun 7(3):8–18
Sasaki N, Sato K, Endo T, Matsuoka S (2015) Exploration of lossy compression for application-level checkpoint/restart. In: 2015 IEEE international parallel and distributed processing symposium, pp 914–922. IEEE
Schive H-Y, Tsai Y-C, Chiueh T (2010) Gamer: a graphic processing unit accelerated adaptive-mesh-refinement code for astrophysics. Astrophys J Suppl Ser 186(2):457
Schive H-Y, ZuHone JA, Goldbaum NJ, Turk MJ, Gaspari M, Cheng C-Y (2018) Gamer-2: a GPU-accelerated adaptive mesh refinement code-accuracy, performance, and scalability. Mon Not R Astron Soc 481(4):4815–4840
Schroeder W, Martin K, Lorensen B, Inc Kitware (2006) The visualization toolkit: an object-oriented approach to 3D graphics. Kitware
Squillacote AH, Ahrens J, Law C, Geveci B, Moreland K, King B (2007) The paraview guide, vol 366. Kitware Clifton Park, NY
Wald I, Johnson GP, Amstutz J, Brownlee C, Knoll A, Jeffers J, Günther J, Navrátil P (2016) Ospray-a CPU ray tracing framework for scientific visualization. IEEE Trans Visual Comput Graphics 23(1):931–940
Wang Y, Chen W, Zhang J, Dong T, Shan G, Chi X (2011) Efficient volume exploration using the gaussian mixture model. IEEE Trans Visual Comput Gr 17(11):1560–1573
Wang K-C, Wei T-H, Shareef N, Shen H-W (2019) Ray-based exploration of large time-varying volume data using per-ray proxy distributions. IEEE Trans Visual Comput Gr 26(11):3299–3313
Wang K-C, Lu K, Wei TH, Shareef N, Shen H-W (2017) Statistical visualization and analysis of large data using a value-based spatial distribution. In: 2017 IEEE pacific visualization symposium (PacificVis), pp 161–170. IEEE
Wang F, Marshak N, Usher W, Burstedde C, Knoll A, Heister T, Johnson CR (2020) Cpu ray tracing of tree-based adaptive mesh refinement data. In: Computer graphics forum, vol 39, pp 1–12. Wiley Online Library https://doi.org/10.1111/cgf.13958
Wang Chaoli, Shen Han-Wei (2005) Hierarchical navigation interface: leveraging multiple coordinated views for level-of-detail multiresolution volume rendering of large scientific data sets. In: Ninth international conference on information visualisation (IV’05), pp 259–267. IEEE
Zhou L, Hansen C (2013) Interactive rendering and efficient querying for large multivariate seismic volumes on consumer level pcs. In: 2013 IEEE symposium on large-scale data analysis and visualization (LDAV), pp 117–118. IEEE
Zimmer Y, Tepper R, Akselrod S (1996) A two-dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images. Ultrasound Med Biol 22(9):1183–1190
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, Y., Yang, Y. & Cao, Y. GPU-based adaptive data reconstruction for large-scale statistical visualization. J Vis 26, 899–915 (2023). https://doi.org/10.1007/s12650-022-00892-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-022-00892-1