Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Color assignment optimization for categorical data visualization with adjacent blocks

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Categorical data charts composed of adjacent color blocks, such as pie charts and stack bar charts, are widely used in daily life and scientific research. Color is a significant channel in such charts. In general, colors are used to distinguish the categories of these data. In some scenes of low color accuracy, the indistinguishability of colors will make these charts challenging to read. Similar colors and poor viewing conditions make it difficult for people to read charts, and people spend more time distinguishing the boundaries of color blocks. There have been previous works by modifying the palette to achieve the distinction between colors. However, in many scenarios, people need to use a palette that meets a particular style and does not allow modification. There is also a method to optimize the color assignment with a given palette, but the method is only designed for scatter plots. In this paper, we propose an automatic coloring method for optimizing the distinguishability of blocks with a given palette based on graph theory and color science. We consider the adjacency of blocks in visual charts as a graph structure and take into account the color difference, block size, and color harmony. To demonstrate the method’s effectiveness, we compared our results with those of another color assignment method. We also use a class visibility measurement method and an aesthetic evaluation method based on deep learning to evaluate each method’s results. The results show that our method can guarantee the distinguishability of the color blocks and produce a sufficiently harmonious visualization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Arvind V, Das B, Köbler J, Toda S (2015) Colored hypergraph isomorphism is fixed parameter tractable. Algorithmica 71(1):120–138

    Article  MathSciNet  MATH  Google Scholar 

  • Bonnici V, Giugno R, Pulvirenti A, Shasha D, Ferro A (2013) A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinform 14(7):S13

    Article  Google Scholar 

  • Cheng S, Xu W, Mueller K (2018) Colormap nd: a data-driven approach and tool for mapping multivariate data to color. IEEE Trans Visual Comput Gr 25(2):1361–1377

    Article  Google Scholar 

  • Colbourn CJ (1981) On testing isomorphism of permutation graphs. Networks 11(1):13–21

    Article  MathSciNet  MATH  Google Scholar 

  • Cook SA (1971) The complexity of theorem-proving procedures. In: The third annual ACM symposium on theory of computing, pp 151–158

  • Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance evaluation of the vf graph matching algorithm. In: Proceedings 10th international conference on image analysis and processing, pp 1172–1177

  • Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372

    Article  Google Scholar 

  • Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml

  • Fang H, Walton S, Delahaye E, Harris J, Storchak D, Chen M (2016) Categorical colormap optimization with visualization case studies. IEEE Trans Visual Comput Gr 23(1):871–880

    Article  Google Scholar 

  • Gramazio CC, Laidlaw DH, Schloss KB (2017) Colorgorical: creating discriminable and preferable color palettes for information visualization. IEEE Trans Visual Comput Gr 23(1):521–530

    Article  Google Scholar 

  • Holy T (2011) Generate maximally perceptually-distinct colors. https://ww2.mathworks.cn/matlabcentral/fileexchange/29702-generate-maximally-perceptually-distinct-colors

  • Hopcroft JE, Wong JK (1974) Linear time algorithm for isomorphism of planar graphs (preliminary report). In: Proceedings of the sixth annual ACM symposium on theory of computing, pp 172–184

  • Huertas R, Melgosa M, Hita E (2006) Influence of random-dot textures on perception of suprathreshold color differences. J Opt Soc Am A 23(9):2067–2076

    Article  Google Scholar 

  • Kim HR, Yoo MJ, Kang H, Lee IK (2014) Perceptually-based color assignment. Comput Gr Forum 33:309–318

    Article  Google Scholar 

  • Lee S, Sips M, Seidel HP (2012) Perceptually driven visibility optimization for categorical data visualization. IEEE Trans Visual Comput Gr 19(10):1746–1757

    Article  Google Scholar 

  • Li D, Mei H, Shen Y, Su S, Zhang W, Wang J, Zu M, Chen W (2018) Echarts: a declarative framework for rapid construction of web-based visualization. Visual Inform 2(2):136–146

    Article  Google Scholar 

  • Liftarn (2009) Pie chart with preliminary results from the 2004 european parliament election. https://commons.wikimedia.org/wiki/File:Pie_chart_EP_election_2004.svg

  • Lin S, Fortuna J, Kulkarni C, Stone M, Heer J (2013) Selecting semantically-resonant colors for data visualization. Comput Gr Forum 32:401–410

    Article  Google Scholar 

  • Liu S, Pei M (2018) Texture-aware emotional color transfer between images. IEEE Access 6:31375–31386

    Article  Google Scholar 

  • Lu K, Feng M, Chen X, Sedlmair M, Deussen O, Lischinski D, Cheng Z, Wang Y (2020) Palettailor: discriminable colorization for categorical data. IEEE Trans Visual Comput Gr 27(2):475–484

    Article  Google Scholar 

  • Lueker GS, Booth KS (1979) A linear time algorithm for deciding interval graph isomorphism. J ACM (JACM) 26(2):183–195

    Article  MathSciNet  MATH  Google Scholar 

  • Luks EM (1982) Isomorphism of graphs of bounded valence can be tested in polynomial time. J Comput Syst Sci 25(1):42–65

    Article  MathSciNet  MATH  Google Scholar 

  • McKay BD (1978) Computing automorphisms and canonical labellings of graphs. Combin Math 2:223–232

    Article  MathSciNet  MATH  Google Scholar 

  • McKay BD et al. (1981) Practical graph isomorphism. Vanderbilt University Tennessee, USA, Department of Computer Science

  • Mokrzycki W, Tatol M (2011) Color difference delta e-a survey. Mach Gr Vis 20:383–411

    Google Scholar 

  • Othman A, Wook TSMT, Qamar F (2020) Categorizing color appearances of image scenes based on human color perception for image retrieval. IEEE Access 8:161692–161701

    Article  Google Scholar 

  • Ou LC, Luo MR (2006) A colour harmony model for two-colour combinations. Color Res Appl 31(3):191–204

    Article  Google Scholar 

  • Setlur V, Stone MC (2015) A linguistic approach to categorical color assignment for data visualization. IEEE Trans Visual Comput Gr 22(1):698–707

    Article  Google Scholar 

  • Sharma G, Wu W, Dalal EN (2005) The ciede2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30(1):21–30

    Article  Google Scholar 

  • Szafir DA (2017) Modeling color difference for visualization design. IEEE Trans Visual Comput Gr 24(1):392–401

    Article  Google Scholar 

  • Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM (JACM) 23(1):31–42

    Article  MathSciNet  Google Scholar 

  • Ullmann JR (2010) Bit-vector algorithms for binary constraint satisfaction and subgraph isomorphism. J Exp Algorithmics (JEA) 15:1–6

    MathSciNet  MATH  Google Scholar 

  • Valdez P, Mehrabian A (1994) Effects of color on emotions. J Exp Psychol Gen 123(4):394

    Article  Google Scholar 

  • Vento M, Jiang X, Foggia P (2015) International contest on pattern search in biological databases

  • Wang Y, Chen X, Ge T, Bao C, Sedlmair M, Fu CW, Deussen O, Chen B (2018) Optimizing color assignment for perception of class separability in multiclass scatterplots. IEEE Trans Visual Comput Gr 25(1):820–829

    Article  Google Scholar 

  • Yang Y, Ming J, Yu N (2012) Color image quality assessment based on ciede2000. Adv Multimedia 2012(11):99

    Google Scholar 

  • Yuan L, Zhou Z, Zhao J, Guo Y, Du F, Qu H (2021) Infocolorizer: interactive recommendation of color palettes for infographics. IEEE Trans Visual Comput Gr 5:1–1

    Google Scholar 

  • Zeng Q, Zhao Y, Wang Y, Zhang J, Cao Y, Tu C, Viola I, Wang Y (2021) http://hdl.handle.net/10754/670899

Download references

Acknowledgments

The authors wish to acknowledge the support from NSFC under Grants (No. 62072183 and 62102278),  Major Program of National Social Science Foundation of China under Grant (No. 22ZD05) and the Shanghai Committee of Science and Technology, China (Grant No. 22511104600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changbo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, J., Sun, Y. et al. Color assignment optimization for categorical data visualization with adjacent blocks. J Vis 26, 917–936 (2023). https://doi.org/10.1007/s12650-022-00905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-022-00905-z

Keywords