Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Computer-based craniofacial superimposition in forensic identification using soft computing

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

One of the most important tasks in forensic anthropology is human identification. Over the past decades, forensic anthropologists have focused on improving techniques to increase the accuracy of identification. Following a thorough examination of unidentified human remains, the investigator chooses a specific identification technique to be applied, depending on the availability of ante mortem and post mortem data. Craniofacial superimposition is a forensic process in which photographs of a missing person are compared with a skull in order to determine whether is the individual depicted and the skeletal remains are the same person. After more than one century of development, craniofacial superimposition has become an interdisciplinary research field where computer science has acquired a key role as a complement of forensic sciences. Moreover, the availability of new digital equipment has resulted in a significant advance in the applicability of this forensic identification technique. In this paper, we review a semi-automatic method devised to assist the forensic anthropologist in the identification process using craniofacial superimposition. The technique is based on a three-stage methodology. The first two are performed automatically by soft computing techniques. However, the final decision corresponds to the forensic expert. The performance of the proposed method is illustrated using several real-world identification cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

Notes

  1. We cannot provide this dataset as public domain due to the Spanish law for protection of personal data.

  2. Notice that these three images have a frontal or near-frontal pose of the face, and/or the corresponding craniometric set of landmarks is coplanar or near-coplanar.

References

  • Bäck T, Fogel DB, Michalewicz Z (1997) Handbook of Evolutionary Computation. IOP Publishing Ltd and Oxford University Press, Bristol

    Book  MATH  Google Scholar 

  • Bertillon A (1896) Signaletic instructions: including the theory and practice of anthropometrical identification. The Werner Company, Chicago

    Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans on Pattern Anal and Mach Intell 14:239–256

    Article  Google Scholar 

  • Beyer HG, Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans Evol Comput 5:250–270

    Article  Google Scholar 

  • Bonissone P (1997) Soft computing: the convergence of emerging reasoning technologies. Soft Comput 1:6–18

    Article  Google Scholar 

  • Broca P (1875) Instructions craniologiques et craniométriques de la Société d’Anthropologie de Paris. In: Mason G (ed) Paris, pp 63–96

  • Burns K (2007) Forensic anthropology training manual. Pearson/Prentice-Hall, Utah

    Google Scholar 

  • Chandra Sekharan P (1993) Positioning the skull for superimposition. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull. Wiley-Liss, New York, pp 105–118

    Google Scholar 

  • Cordón O, Damas S, Santamaría J (2006) Feature-based image registration by means of the CHC evolutionary algorithm. Image Vis Comput 22:525–533

    Article  Google Scholar 

  • Dalley G, Flynn P (2001) Range image registration: a software platform and empirical evaluation. In: Third international conference on 3-D digital imaging and modeling (3DIM’01), pp 246–253

  • Damas S, Cordón O, Santamaría J (2011a) Medical image registration using evolutionary computation: an experimental survey. IEEE Comput Intell Mag 6(4):26–42

    Article  Google Scholar 

  • Damas S, Cordón O, Ibáñez O, Santamaría J, Alemán I, Navarro F, Botella M (2011b) Forensic identification by computer-aided craniofacial superimposition: a survey. ACM Comput Surv 43(4):1–27

    Google Scholar 

  • De Angelis D, Sala R, Cantatore A, Grandi M, Cattaneo C (2009) A new computer-assisted technique to aid personal identification. Int J Leg Med 123(4):351–356

    Article  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  • Diamond P, Kloeden P (2000) Metric topology of fuzzy numbers and fuzzy analysis. In: Dubois D, Prade H (eds) Fundamentals of fuzzy sets. Kluwer, Boston, pp 583–637

    Chapter  Google Scholar 

  • Dru F, Wachowiak MP, Peters TM (2006) An ITK framework for deterministic global optimization for medical image registration. Proc SPIE Med Imaging Image Process 6144:1–12

    Google Scholar 

  • Eiben A, Smith J (2003) Introduction to evolutionary computing (natural computing series). Springer, Berlin

  • Eshelman LJ (1991) The CHC adaptive search algorithm: how to safe search when engaging in nontraditional genetic recombination. In: Rawlins GJE (ed) Foundations of genetic algorithms 1. Morgan Kaufmann, San Mateo, pp 265–283

    Google Scholar 

  • Eshelman LJ (1993) Real-coded genetic algorithms and interval schemata. In: Whitley LD (ed) Foundations of genetic algorithms 2. Morgan Kaufmann, San Mateo, pp 187–202

    Google Scholar 

  • Fenton TW, Heard AN, Sauer NJ (2008) Skull-photo superimposition and border deaths: identification through exclusion and the failure to exclude. J Foren Sci 53(1):34–40

    Article  Google Scholar 

  • George RM (1993) Anatomical and artistic guidelines for forensic facial reconstruction. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull 16. Wiley-Liss, New York, pp 215–227

    Google Scholar 

  • Ghosh A, Sinha P (2001) An economised craniofacial identification system. J Foren Sci Int 117(1–2):109–119

    Google Scholar 

  • Glaister J, Brash J (1937) Medico-legal aspects of the Ruxton case. E & S Livingstone, Edinburgh

    Google Scholar 

  • Glover F (1977) Heuristic for integer programming using surrogate constraints. J Decis Sci 8:156–166

    Article  Google Scholar 

  • González RC, Woods RE (2008) Digital image processing. Pearson Prentice, Upper Saddle River

    Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comp 9(2):159–195

    Article  Google Scholar 

  • Hearn D, Baker MP (1997) Computer graphics: C version. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Ibáñez O, Ballerini L, Cordón O, Damas S, Santamaría J (2009a) An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification. Inf Sci 179(23):3998–4028

    Article  Google Scholar 

  • Ibáñez O, Cordón O, Damas S, Santamaría J (2009b) Multimodal genetic algorithms for craniofacial superimposition. In: Raymond C (ed) Nature-inspired informatics for intelligent applications and knowledge discovery: implications in business, science and engineering, pp 119–142

  • Ibáñez O, Cordón O, Damas S, Santamaría J (2011) Modeling the skull-face overlay uncertainty using fuzzy sets. IEEE Trans Fuzzy Syst 19(5):946–959

    Article  Google Scholar 

  • Ibáñez O, Cordón O, Damas S, Santamaría J (2012a) An advanced scatter search design for skull-face overlay in craniofacial superimposition. Experts Syst Appl 39(1):1459–1473

    Google Scholar 

  • Ibáñez O, Cordón O, Damas S (2012b) A cooperative coevolutionary approach dealing with the skull-face overlay uncertainty in forensic identification by craniofacial superimposition. Soft Comput 16(5):797–808

    Article  Google Scholar 

  • Ikeuchi K, Sato Y, Nishino K, Sato I (2001) Modeling from reality: photometric aspect. Trans Virtual Real Soc Jpn 4(4):623–630

    Google Scholar 

  • Iscan M (1981) Integral forensic anthropology. Pract Anthropol 3(4):21–30

    Google Scholar 

  • Iscan MY (1993) Introduction to techniques for photographic comparison. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull. Wiley, New York, pp 57–90

    Google Scholar 

  • Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flow shop scheduling. IEEE Trans Evol Comp 7(2):204–223

    Article  Google Scholar 

  • Jayaprakash PT, Srinivasan GJ, Amravaneswaran MG (2001) Craniofacial morphoanalysis: a new method for enhancing reliability while identifying skulls by photosuperimposition. Foren Sci Int 117:121–143

    Article  Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  Google Scholar 

  • Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans Evol Comp 9(5):474–488

    Article  Google Scholar 

  • Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine, 2nd edn. Charles C. Thomas, Springfield

  • Laguna M, Martí R (2003) Scatter search: methodology and implementations. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Martin R, Saller K (1966) Lehrbuch der Anthropologie in Systematischer Darstellung (in German) Gustav Fischer Verlag, Stuttgart

  • Nickerson BA, Fitzhorn PA, Koch SK, Charney M (1991) A methodology for near-optimal computational superimposition of two dimensional digital facial photographs and three-dimensional cranial surface meshes. J Foren Sci 36(2):480–500

    Google Scholar 

  • Park HK, Chung JW, Kho HS (2006) Use of hand-held laser scanning in the assessment of craniometry. J Foren Sci Int 160:200–206

    Article  Google Scholar 

  • Pesce Delfino V, Colonna M, Vacca E, Potente F, Introna F (1986) Computer-aided skull/face superimposition. Amer J Foren Med Pathol 7(3):201–212

    Article  Google Scholar 

  • Pétrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE international conference on evolutionary computation, pp 798–803

  • Powell M (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162

    Article  MathSciNet  MATH  Google Scholar 

  • Santamaría J, Cordón O, Damas S, Alemán I, Botella M (2007a) Evolutionary approaches for automatic 3D modeling of skulls in forensic identification. Applications of evolutionary computing. In: Giacobini M et al (eds) Lecture notes in computer science, vol 4448. Springer, Berlin, pp 415–422

  • Santamaría J, Cordón O, Damas S, Alemán I, Botella M (2007b) A scatter search-based technique for pair-wise 3D range image registration in forensic anthropology. Soft Comput 11(9):819–828

    Article  Google Scholar 

  • Santamaría J, Cordón O, Damas S, García-Torres JM, Quirin A (2009a) Performance evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Comput 13(8–9):883–904

    Article  Google Scholar 

  • Santamaría J, Cordón O, Damas S, Ibáñez O (2009b) Tackling the coplanarity problem in 3D camera calibration by means of fuzzy landmarks: a performance study in forensic craniofacial superimposition. IEEE Int Conf Comp Vis 926:1686–1693

    Google Scholar 

  • Santamaría J, Cordón O, Damas S (2010) A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling. Comp Vis Image Underst 115(9):1340–1354

    Article  Google Scholar 

  • Seta S, Yoshino M (1993) A combined apparatus for photographic and video superimposition. In: Iscan MY, Helmer R (eds) Forensic analysis of the skull. Wiley, New York, pp 161–169

  • Silva L, Bellon O, Boyer K (2005) Robust range image registration using genetic algorithms and the surface interpenetration measure. In: Series in machine perception and artificial intelligence. World Scientific Publishing Co. Pte. Ltd., Singapore

  • Solis FJ, Wets RJB (1981) Minimization by random search techniques. In: Informs (ed) Mathematics of operations research, vol 6, USA, pp 19–30

  • Stephan CN (2009) Craniofacial identification: techniques of facial approximation and craniofacial superimposition. In: Blau S, Ubelaker DH (eds) Handbook of forensic anthropology and archaeology. Left Coast Press, California, pp 304–321

    Google Scholar 

  • Stephan CN, Simpson E (2008a) Facial soft tissue depths in craniofacial identification—part I: an analytical review of the published adult data. J Foren Sci 53(6):1257–1272

    Google Scholar 

  • Stephan CN, Simpson E (2008b) Facial soft tissue depths in craniofacial identification—part I: an analytical review of the published sub-adult data. J Foren Sci 53(6):1273–1279

    Google Scholar 

  • Storn R (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor J, Brown K (1998) Superimposition techniques. In: Clement J, Ranson D (eds) Craniofacial identification in forensic medicine. Arnold, London, pp 151–164

    Google Scholar 

  • Ubelaker DH (2000) A history of Smithsonian-FBI collaboration in forensic anthropology, especially in regard to facial imagery. Foren Sci Commun 2(4)

  • Ubelaker DH, Bubniak E, O’Donnell G (1992) Computer-assisted photographic superimposition. J Foren Sci 37(3):750–762

    Google Scholar 

  • Yamany SM, Ahmed MN, Farag AA (1999) A new genetic-based technique for matching 3D curves and surfaces. Pattern Recognit 32:1817–1820

    Article  Google Scholar 

  • Yao J, Goh KL (2006) A refined algorithm for multisensor image registration based on pixel migration. IEEE Trans Image Process 15(7):1839–1847

    Article  Google Scholar 

  • Yoshino M, Imaizumi K, Miyasaka S, Seta S (1995) Evaluation of anatomical consistency in craniofacial superimposition images. Foren Sci Int 74:125–134

    Article  Google Scholar 

  • Yoshizawa S, Belyaev A, Seidel HP (2005) Fast and robust detection of crest lines on meshes. In: SPM’05: proceedings of the 2005 ACM symposium on solid and physical modeling. ACM Press, New York, pp 227–232

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z (1994) Iterative point matching for registration of free-form curves and surfaces. Int J Comput Vis 13(2):119–152

    Article  Google Scholar 

  • Zitová B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21:977–1000

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministerio de Educación y Ciencia under the project TIN2009-07727. The authors would like to thank the team of the Physical Anthropology Laboratory of the University of Granada for providing us with real-world cases for our analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rosario Campomanes-Álvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campomanes-Álvarez, B.R., Cordón, Ó., Damas, S. et al. Computer-based craniofacial superimposition in forensic identification using soft computing. J Ambient Intell Human Comput 5, 683–697 (2014). https://doi.org/10.1007/s12652-012-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-012-0168-1

Keywords