Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-step medical image segmentation based on reinforcement learning

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Image segmentation technology has made a remarkable effect in medical image analysis and processing, which is used to help physicians get a more accurate diagnosis. Manual segmentation of the medical image requires a lot of effort by professionals, which is also a subjective task. Therefore, developing an advanced segmentation method is an essential demand. We propose an end-to-end segmentation method for medical images, which mimics physicians delineating a region of interest (ROI) on the medical image in a multi-step manner. This multi-step operation improves the performance from a coarse result to a fine result progressively. In this paper, the segmentation process is formulated as a Markov decision process and solved by a deep reinforcement learning (DRL) algorithm, which trains an agent for segmenting ROI in images. The agent performs a serial action to delineate the ROI. We define the action as a set of continuous parameters. Then, we adopted a DRL algorithm called deep deterministic policy gradient to learn the segmentation model in continuous action space. The experimental result shows that the proposed method has 7.24% improved to the state-of-the-art method on three prostate MR data sets and has 3.52% improved on one retinal fundus image data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguirreramos H, Avinacervantes JG, Cruzaceves I, Ruizpinales J, Ledesma S (2018) Blood vessel segmentation in retinal fundus images using gabor filters, fractional derivatives, and expectation maximization. Appl Math Comput 339:568–587

    MathSciNet  Google Scholar 

  • Ahmadvand A, Daliri MR (2015) Improving the runtime of mrf based method for mri brain segmentation. Appl Math Comput 256:808–818

    MathSciNet  MATH  Google Scholar 

  • Alansary A, Oktay O, Li Y, Le Folgoc L, Hou B, Vaillant G, Kamnitsas K, Vlontzos A, Glocker B, Kainz B et al (2019) Evaluating reinforcement learning agents for anatomical landmark detection. Med Image Anal 53:156–164

    Article  Google Scholar 

  • Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief survey. IEEE Signal Process Mag 34(6):26–38

    Article  Google Scholar 

  • Ba J, Mnih V, Kavukcuoglu K (2014) Multiple object recognition with visual attention. arXiv preprint arXiv:14127755

  • Caicedo JC, Lazebnik S (2015) Active object localization with deep reinforcement learning. In: Proceedings of the IEEE international conference on computer vision. IEEE, Santiago, pp 2488–2496

    Google Scholar 

  • Castrejon L, Kundu K, Urtasun R, Fidler S (2017) Annotating object instances with a polygon-rnn. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Honolulu, pp 5230–5238

    Google Scholar 

  • Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  • Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder–decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV). Springer, Munich, pp 801–818

    Google Scholar 

  • Dai J, He K, Sun J (2016) Instance-aware semantic segmentation via multi-task network cascades. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 3150–3158

    Google Scholar 

  • Eltanboly A, Ghazal M, Hajjdiab H, Shalaby A, Switala A, Mahmoud AM, Sahoo PK, Elazab MS, Elbaz A (2019) Level sets-based image segmentation approach using statistical shape priors. Appl Math Comput 340:164–179

    MathSciNet  MATH  Google Scholar 

  • Guotai W, Li Wenqi, Vercauteren T (2018) Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 37(7):1562–1573

    Article  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 770–778

    Google Scholar 

  • Huang Z, Heng W, Zhou S (2019) Stroke-based artistic rendering agent with deep reinforcement learning. arXiv preprint arXiv:190304411

  • Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167

  • Jagadeesan S, Subbiah J (2020) Real-time personalization and recommendation in adaptive learning management system. J Ambient Intell Humaniz Comput 2:1–11

    Google Scholar 

  • Kim D, Lee T, Kim S, Lee B, Youn HY (2019) Adaptive packet scheduling in iot environment based on q-learning. J Ambient Intell Humaniz Comput 6:1–11

    Google Scholar 

  • Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980

  • Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control with deep reinforcement learning. arXiv preprint arXiv:150902971

  • Litjens GJS, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Der Laak JAWMV, Van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  • Liu F, Li S, Zhang L, Zhou C, Ye R, Wang Y, Lu J (2017) 3dcnn-dqn-rnn: a deep reinforcement learning framework for semantic parsing of large-scale 3d point clouds. In: Proceedings of the IEEE international conference on computer vision. IEEE, Venice, pp 5678–5687

    Google Scholar 

  • Liu R, Lehman J, Molino P, Such FP, Frank E, Sergeev A, Yosinski J (2018) An intriguing failing of convolutional neural networks and the coordconv solution. In: Advances in neural information processing systems. MIT Press, Montreal, pp 9605–9616

    Google Scholar 

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Boston, pp 3431–3440

    Google Scholar 

  • Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks, concurrency and computation: practice and experience. Concurr Comput Pract Exp 29(6):e3927

    Article  Google Scholar 

  • Lu H, Kondo M, Li Y, Tan J, Kim H (2020) Supervoxel graph cuts: an effective method for ggo candidate regions extraction on ct images. IEEE Consum Electron Mag 9(1):61–66

    Article  Google Scholar 

  • Madani Y, Ezzikouri H, Erritali M, Hssina B (2019) Finding optimal pedagogical content in an adaptive e-learning platform using a new recommendation approach and reinforcement learning. J Ambient Intell Humaniz Comput 12:1–16

    Google Scholar 

  • Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International conference on 3D vision (3DV). IEEE, Stanford, pp 565–571

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529

    Article  Google Scholar 

  • Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning. In: International conference on machine learning. ACM, New York, pp 1928–1937

    Google Scholar 

  • Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari with deep reinforcement learning. arXiv preprint arXiv:13125602

  • Orlando JI, Fu H, Breda JB, van Keer K, Bathula DR, Diaz-Pinto A, Fang R, Heng PA, Kim J, Lee J et al (2020) Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 59:101570

    Article  Google Scholar 

  • Rao Y, Lu J, Zhou J (2017) Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE international conference on computer vision. IEEE, Venice, pp 3931–3940

    Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Munich, pp 234–241

    Google Scholar 

  • Rother C, Kolmogorov V, Blake A (2004) Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314

    Article  Google Scholar 

  • Sahba F, Tizhoosh HR, Salama MM (2008) Application of reinforcement learning for segmentation of transrectal ultrasound images. BMC Med Imaging 8(1):8

    Article  Google Scholar 

  • Salimans T, Kingma DP (2016) Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: Advances in neural information processing systems. MIT Press, Barcelona, pp 901–909

    Google Scholar 

  • Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arXiv preprint arXiv:170706347

  • Shi W, Caballero J, Huszar F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z (2016) Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 1874–1883

    Google Scholar 

  • Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algorithms. In: International conference on machine learning. ACM, Beijing, pp 1–9

    Google Scholar 

  • Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  • Song G, Myeong H, Mu Lee K (2018) Seednet: automatic seed generation with deep reinforcement learning for robust interactive segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Salt Lake City, pp 1760–1768

    Google Scholar 

  • Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for reinforcement learning with function approximation. In: Advances in neural information processing systems. ACM, New York, pp 1057–1063

    Google Scholar 

  • Tian Z, Liu L, Zhang Z, Fei B (2016) Superpixel-based segmentation for 3d prostate mr images. IEEE Trans Med Imaging 35(3):791–801

    Article  Google Scholar 

  • Wang Z, Sarcar S, Liu J, Zheng Y, Ren X (2018) Outline objects using deep reinforcement learning. arXiv preprint arXiv:180404603

  • Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292

    Article  MATH  Google Scholar 

  • Wu J, Li G, Lu H, Kim H (2019) Multi-organ segmentation from abdominal ct with random forest based statistical shape model. In: International conference on biomedical signal and image processing. ACM, New York, pp 67–70

    Google Scholar 

  • Xiang S, Li H (2017) On the effects of batch and weight normalization in generative adversarial networks. arXiv preprint arXiv:170403971

  • Xie N, Zhao T, Tian F, Zhang XH, Sugiyama M (2015) Stroke-based stylization learning and rendering with inverse reinforcement learning. In: Twenty-fourth international joint conference on artificial intelligence. AAAI, Palo Alto, pp 2531–2537

    Google Scholar 

  • Xu X, Lu H, Song J, Yang Y, Shen HT, Li X (2019) Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval. In: IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2928180

    Article  Google Scholar 

  • Yoshino Y, Miyajima T, Lu H (2017) Automatic classification of lung nodules on mdct images with the temporal subtraction technique. Int J Comput Assist Radiol Surg 12:1789–1798

    Article  Google Scholar 

  • Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Honolulu, pp 2881–2890

    Google Scholar 

  • Zhu Y, Zhao D (2019) Vision-based control in the open racing car simulator with deep and reinforcement learning. J Ambient Int Humaniz Comput 9:1–13

    Google Scholar 

  • Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L, Farhadi A (2017) Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE, Singapore, pp 3357–3364

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant no. 61876148. This work was also supported in part by the Fundamental Research Funds for the Central Universities no. XJJ2018254, and China Postdoctoral Science Foundation no. 2018M631164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Si, X., Zheng, Y. et al. Multi-step medical image segmentation based on reinforcement learning. J Ambient Intell Human Comput 13, 5011–5022 (2022). https://doi.org/10.1007/s12652-020-01905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-01905-3

Keywords