Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

RETRACTED ARTICLE: An effective deep learning features based integrated framework for iris detection and recognition

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

This article was retracted on 27 November 2024

This article has been updated

Abstract

In recent years, Iris recognition has emerged as an important and trustworthy biometric model to recognize humans. The application of automatic iris recognition models find useful in different fields namely border control, citizen confirmation, and criminal to commercial products. This paper introduces an effective deep learning (DL) based integrated model for precise iris detection, segmentation and recognition. The projected model involves different stages namely preprocessing, detection, segmentation and recognition. Initially, preprocessing of images takes place to improve the quality of the input image using Black Hat filtering, Median filtering and Gamma Correction. Then, Hough Circle Transform model is applied to localize the region of interest, i.e. iris in an effective way. Afterwards, Mask region proposal network with convolution neural network (R-CNN) with Inception v2 model is applied for trustworthy iris recognition and segmentation i.e., recognizing iris/non-iris pixels. For validating the results of the presented model, a detailed simulation takes place using a benchmark CASIA-Iris Thousand dataset and the results are validated interms of detection accuracy. The attained simulation outcome depicted that the projected technique shows maximum recognition accuracy of 99.14% which is superior to other methods such as UniNet.V2, AlexNet, VGGNet, Inception, ResNet and DenseNet models in a significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jayanthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12652-024-04899-4

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanthi, J., Lydia, E.L., Krishnaraj, N. et al. RETRACTED ARTICLE: An effective deep learning features based integrated framework for iris detection and recognition. J Ambient Intell Human Comput 12, 3271–3281 (2021). https://doi.org/10.1007/s12652-020-02172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02172-y

Keywords