Abstract
The main objective of this study is to propose and verify a novel ensemble methodology that could improve prediction performances of landslide susceptibility models. The proposed methodology is based on the functional tree classifier and three current state-of-the art machine learning ensemble frameworks, Bagging, AdaBoost, and MultiBoost. According to current literature, these methods have been rarely used for the modeling of rainfall-induced landslides. The corridor of the National Road 32 (Vietnam) was selected as a case study. In the first stage, the landslide inventory map with 262 landslide polygons that occurred during the last 20 years was constructed and then was randomly partitioned into a ratio of 70/30 for training and validating the models. Second, ten landslide conditioning factors were prepared such as slope, aspect, relief amplitude, topographic wetness index, topographic shape, distance to roads, distance to rivers, distance to faults, lithology, and rainfall. The model performance was assessed and compared using the receiver operating characteristic and statistical evaluation measures. Overall, the FT with Bagging model has the highest prediction capability (AUC = 0.917), followed by the FT with MultiBoost model (AUC = 0.910), the FT model (AUC = 0.898), and the FT with AdaBoost model (AUC = 0.882). Compared with those derived from popular methods such as J48 decision trees and artificial neural networks, the performance of the FT with Bagging model is better. Therefore, it can be concluded that the FT with Bagging is promising and could be used as an alternative in landslide susceptibility assessment. The result in this study is useful for land use planning and decision making in landslide prone areas.










Similar content being viewed by others
References
Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, van Loon EE, Raes N, Reemer M, Biesmeijer JC (2013) Fit-for-purpose: species distribution model performance depends on evaluation criteria—Dutch hoverflies as a case study. PLoS One 8:e63708. doi:10.1371/journal.pone.0063708
Ajit Krisshna NL, Deepak VK, Manikantan K, Ramachandran S (2014) Face recognition using transform domain feature extraction and PSO-based feature selection. Appl Soft Comput 22:141–161. doi:10.1016/j.asoc.2014.05.007
Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble decision tree-based CHi squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides 11:1063–1078
Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains. Central Jpn Geomorphol 65:15–31. doi:10.1016/j.geomorph.2004.06.010
Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci Bull 24:43–69. doi:10.1080/02626667909491834
Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Burby RJ (1998) Cooperating with nature: confronting natural hazards with land-use planning for sustainable communities. Joseph Henry Press, Washington
Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45:55–72. doi:10.1007/s11069-007-9169-3
Cheng M-Y, Hoang N-D (2015) A Swarm-Optimized Fuzzy Instance-based Learning approach for predicting slope collapses in mountain roads. Knowl Based Syst 76:256–263
Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472
Chung C-J, Fabbri AG (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation technique. Geomorphology 94:438–452. doi:10.1016/j.geomorph.2006.12.036
Chung CJF, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards, vol 5. Springer, New York, pp 107–133
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. doi:10.1177/001316446002000104
Costanzo D, Rotigliano E, Irigaray C, Jiménez-Perálvarez JD, Chacón J (2012) Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci 12:327–340. doi:10.5194/nhess-12-327-2012
Costanzo D, Chacón J, Conoscenti C, Irigaray C, Rotigliano E (2014) Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides 11:639–653. doi:10.1007/s10346-013-0415-3
Cross M (2002) Landslide susceptibility mapping using the Matrix Assessment Approach: a Derbyshire case study. In: Griffiths JS (ed) Mapping in engineering geology, vol 15. The Geological society, Key Issue in Earth Sciences, London, pp 247–261
Dai J, Xu Q (2013) Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl Soft Comput 13:211–221. doi:10.1016/j.asoc.2012.07.029
Dai F, Lee C, Li J, Xu Z (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island. Hong Kong Environ Geol 40:381–391
Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87
Doetsch P et al (2009) Logistic model trees with AUC split criterion for the KDD cup 2009 small challenge. In KDD Cup, pp 77–88
Doshi M, Chaturvedi SK (2014) Correlation based feature selection (CFS) technique to predict student performance. Int J Comput Netw Commun (UCNC) 6:197–206
Dou J et al (2015) Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS One 10:e0133262. doi:10.1371/journal.pone.0133262
Ercanoglu M (2005) Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci 5:979–992
Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874
Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (1996) Advances in knowledge discovery and data mining. AAAI press, Menlo Park, California (USA)
Felicisimo A, Cuartero A, Remondo J, Quiros E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189. doi:10.1007/s10346-012-0320-1
Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards 30:297–308. doi:10.1023/B:NHAZ.0000007092.51910.3f
Floris M, Iafelice M, Squarzoni C, Zorzi L, Agostini AD, Genevois R (2011) Using online databases for landslide susceptibility assessment: an example from the Veneto Region (northeastern Italy). Nat Hazards Earth Syst Sci 11:1915–1925
Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55:119–139. doi:10.1006/jcss.1997.1504
Gama J (2004) Functional trees. Mach Learn 55:219–250
Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-boosted trees for high precision, low variance ranking models. In: Proceedings of the 34th international ACM SIGIR conference on research and development in information retrieval. ACM, pp 85–94
Gautheir TD (2001) Detecting trends using Spearman’s rank correlation coefficient. Environ Forensics 2:359–362. doi:10.1080/713848278
Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27. doi:10.1016/j.enggeo.2004.10.004
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216
Hagen A (2002) Multi-method assessment of map similarity. In: Proceedings of the fifth AGILE conference on geographic information science, Palma, Spain, pp 171–182
Highland L, Bobrowsky PT (2008) The landslide handbook: a guide to understanding landslides. US Geological Survey Reston
Ho TC et al (2010) Combination of structural geology, remote sensing, and GIS for the study of current status and prediction of flash floods and landslides at the National Road No. 32 section from the Yen Bai to the Lai Chau Provinces. Vietnam Institute of Geosciences and Mineral Resources, Hanoi
Hoang N-D, Tien Bui D (2016) A novel relevance vector machine classifier with cuckoo search optimization for spatial prediction of landslides. J Comput Civil Eng. doi:10.1061/(ASCE)CP.1943-5487.0000557
Hoang N-D, Tien Bui D, Liao K-W (2016) Groutability estimation of grouting processes with cement grouts using Differential Flower Pollination Optimized Support Vector Machine. Appl Soft Comput 45:173–186. doi:10.1016/j.asoc.2016.04.031
Hong H, Pradhan B, Xu C, Tien Bui D (2015a) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 133:266–281. doi:10.1016/j.catena.2015.05.019
Hong H, Xu C, Revhaug I, Tien Bui D (2015b) Spatial prediction of landslide hazard at the Yihuang Area (China): a comparative study on the predictive ability of backpropagation multi-layer perceptron neural networks and radial basic function neural networks. In: Robbi Sluter C, Madureira Cruz CB, Leal de Menezes PM (eds) Cartography—maps connecting the world. Lecture notes in geoinformation and cartography. Springer, Cham, pp 175–188. doi:10.1007/978-3-319-17738-0_13
Hong H, Chen W, Xu C, Youssef AM, Pradhan B, Tien Bui D (2016) Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. doi:10.1080/10106049.2015.1130086
Ilia I, Tsangaratos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13:379–397
Irigaray C, Fernández T, El Hamdouni R, Chacón J (2007) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Nat Hazards 41:61–79. doi:10.1007/s11069-006-9027-8
Jebur MN, Pradhan B, Tehrany MS (2014) Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sens Environ 152:150–165. doi:10.1016/j.rse.2014.05.013
Kavzoglu T, Sahin E, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439. doi:10.1007/s10346-013-0391-7
Kavzoglu T, Kutlug Sahin E, Colkesen I (2015) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496. doi:10.1007/s11069-014-1506-8
Kumar YJ, Salim N, Raza B (2012) Cross-document structural relationship identification using supervised machine learning. Appl Soft Comput 12:3124–3131. doi:10.1016/j.asoc.2012.06.017
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174
Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59:161–205. doi:10.1007/s10994-005-0466-3
Lay MG (2009) Handbook of road technology. CRC Press, Boca Raton
Lee S, Ryu JH, Min KD, Won JS (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Proc Land 28:1361–1376. doi:10.1002/esp.593
Lee M-J, Choi J-W, Oh H-J, Won J-S, Park I, Lee S (2012) Ensemble-based landslide susceptibility maps in Jinbu area. Korea Environ Earth Sci 67:23–37. doi:10.1007/s12665-011-1477-y
Lee S, Won J-S, Jeon SW, Park I, Lee MJ (2014) Spatial landslide hazard prediction using rainfall probability and a logistic regression model. Math Geosci 47:565–589
Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165. doi:10.1016/S0169-555X(00)00068-4
Magliulo P, Di Lisio A, Russo F, Zelano A (2008) Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy. Nat Hazards 47:411–435
Manzo G, Tofani V, Segoni S, Battistini A, Catani F (2013) GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study. Int J Geogr Inf Sci 27:1433–1452
Martín B, Alonso JC, Martín CA, Palacín C, Magaña M, Alonso J (2012) Influence of spatial heterogeneity and temporal variability in habitat selection: a case study on a great bustard metapopulation. Ecol Model 228:39–48
Martínez-Álvarez F, Reyes J, Morales-Esteban A, Rubio-Escudero C (2013) Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowl Based Syst 50:198–210. doi:10.1016/j.knosys.2013.06.011
Maudes J, Rodriguez JJ, Garcia-Osorio C, Garcia-Pedrajas N (2012) Random feature weights for decision tree ensemble construction. Inf Fusion 13:20–30. doi:10.1016/j.inffus.2010.11.004
Mennis J, Guo D (2009) Spatial data mining and geographic knowledge discovery—an introduction Computers. Environ Urban Syst 33:403–408. doi:10.1016/j.compenvurbsys.2009.11.001
Myers L, Sirois MJ (2014) Spearman correlation coefficients, differences between. In: Wiley StatsRef: statistics reference online. Wiley. doi:10.1002/9781118445112.stat02802
Park I, Lee S (2014) Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area. Korea Int J Remote Sens 35:6089–6112
Passman MA et al (2011) Validation of Venous Clinical Severity Score (VCSS) with other venous severity assessment tools from the American Venous Forum, National Venous Screening Program. J Vasc Surg 54:2S–9S. doi:10.1016/j.jvs.2011.05.117
Pham B, Tien Bui D, Pourghasemi H, Indra P, Dholakia MB (2015) Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. doi:10.1007/s00704-015-1702-9
Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB (2016a) A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. doi:10.1016/jenvsoft201607005
Pham BT, Tien Bui D, Prakash I, Dholakia MB (2016b) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards. doi:10.1007/s11069-016-2304-2
Pontius RG (2000) Quantification error versus location error in comparison of categorical maps. Photogramm Eng Remote Sens 66:1011–1016
Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. doi:10.1016/j.cageo.2012.08.023
Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759. doi:10.1016/j.envsoft.2009.10.016
Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF (2010) Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sens 48:4164–4177. doi:10.1109/tgrs.2010.2050328
Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199
Quinlan JR (1993) C45: programs for machine learning. Morgan Kaufmann, San Mateo
Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif Intell Res 4:77–90
Rodriguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28:1619–1630. doi:10.1109/TPAMI.2006.211
Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39. doi:10.1007/s10462-009-9124-7
Senthamarai Kannan S, Ramaraj N (2010) A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm. Knowl Based Syst 23:580–585. doi:10.1016/j.knosys.2010.03.016
Shun B, Wenjia W (2006) Investigation on diversity in homogeneous and heterogeneous ensembles. In: International joint conference on neural networks, 2006. IJCNN’06. 16–21 July 2006, pp 3078–3085. doi:10.1109/IJCNN.2006.247268
Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci Dis 10:101–112
Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679. doi:10.1007/s00254-003-0917-8
Tang C, Zhu J, Qi X (2010) Landslide hazard assessment of the 2008 Wenchuan earthquake: a case study in Beichuan area. Can Geotechn J 48:128–145
Tien Bui D, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat Hazards 59:1413–1444. doi:10.1007/s11069-011-9844-2
Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012a) Landslide susceptibility assessment in Vietnam using Support vector machines, decision tree and Naïve Bayes models. Math Prob Eng 2012:1–26
Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012b) Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis. In: Seppelt R, Voinov AA, Lange S, Bankamp D (eds) Proceedings of the iEMSs sixth biennial meeting: international congress on environmental modelling and software (iEMSs 2012). International Environmental Modelling and Software Society, Leipzig
Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012c) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171–172:12–29
Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012d) Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211. doi:10.1016/j.cageo.2011.10.031
Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2012e) Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena 96:28–40. doi:10.1016/j.catena.2012.04.001
Tien Bui D, Ho TC, Revhaug I, Pradhan B, Nguyen D (2013a) Landslide susceptibility mapping along the National Road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In: Buchroithner M, Prechtel N, Burghardt D (eds) Cartography from pole to pole. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 303–317. doi:10.1007/978-3-642-32618-9_22
Tien Bui D, Tin DQ, Ha VP, Revhaug I, Lien VN, Ha TT, Hoa LB (2013b) Spatial prediction of landslide hazard along the National Road 32 of Vietnam: a comparison between support vector machines, radial basis function neural networks, and their ensembles. In: Geohazards: impacts and challenges for society development in Asian Countries, 49th CCOP annual session, Sendai, Japan. Geological Survey of Japan, pp 161–171. doi:10.13140/RG.2.1.3073.2327
Tien Bui D, Pradhan B, Revhaug I, Trung Tran C (2014) A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam. In: Srivastava PK, Mukherjee S, Gupta M, Islam T (eds) Remote sensing applications in environmental research, society of earth scientists series. Springer, Cham, pp 87–111. doi:10.1007/978-3-319-05906-8_6
Tien Bui D, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN (2015) A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son city area (Vietnam) Geomatics. Nat Hazards Risk 6:243–271. doi:10.1080/19475705.2013.843206
Tien Bui D, Le K-T, Nguyen V, Le H, Revhaug I (2016a) Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression. Remote Sens 8:347
Tien Bui D, Nguyen Q-P, Hoang N-D, Klempe H (2016b) A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides. doi:10.1007/s10346-016-0708-4
Tien Bui D, Pham TB, Nguyen Q-P, Hoang N-D (2016c) Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of least squares support vector machines and differential evolution optimization: a case study in Central Vietnam. Int J Digit Earth. doi:10.1080/1753894720161169561
Tien Bui D, Pradhan B, Nampak H, Quang Bui T, Tran Q-A, Nguyen QP (2016d) Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical cyclone area using GIS. J Hydrol 540:317–330. doi:10.1016/j.jhydrol.2016.06.027
Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016e) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378. doi:10.1007/s10346-015-0557-6
Trawiński K, Cordón O, Quirin A, Sánchez L (2013) Multiobjective genetic classifier selection for random oracles fuzzy rule-based classifier ensembles: how beneficial is the additional diversity? Knowl Based Syst 54:3–21. doi:10.1016/j.knosys.2013.08.006
Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). J Geomorphol. doi:10.1016/j.geomorph.2015.06.001
Tsangaratos P, Ilia I (2015) Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. doi:10.1007/s10346-015-0565-6
Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003
Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419
Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2011) Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: a contribution to the unbiased selection of causal factors. Nat Hazards Earth Syst Sci 11:1475–1497
Visser H, de Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358. doi:10.1016/j.envsoft.2004.11.013
Webb GI (2000) MultiBoosting: a technique for combining boosting and wagging. Mach Learn 40:159–196. doi:10.1023/a:1007659514849
Were K, Tien Bui D, Dick ØB, Singh BR (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol Indic 52:394–403
Witten IH, Frank E, Mark AH (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Burlington
Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85:274–287. doi:10.1016/j.catena.2011.01.014
Yang Q, Shao J, Scholz M, Plant C (2011) Feature selection methods for characterizing and classifying adaptive Sustainable Flood Retention Basins. Water Res 45:993–1004. doi:10.1016/j.watres.2010.10.006
Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101:572–582. doi:10.1016/j.geomorph.2008.02.011
Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138. doi:10.1016/j.cageo.2008.08.007
Zhang F, Pei X, Chen W, Liu G, Liang S (2014) Spatial variation in geotechnical properties and topographic attributes on the different types of shallow landslides in a loess catchment. China Eur J Environ Civil Eng 18:470–488. doi:10.1080/19648189.2014.881754
Acknowledgments
This research was supported by the Geographic Information System group, University College of Southeast Norway, Bø i Telemak, Norway.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Tien Bui, D., Ho, TC., Pradhan, B. et al. GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci 75, 1101 (2016). https://doi.org/10.1007/s12665-016-5919-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-016-5919-4