Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Determination of the thermal conductivity of sandstones from laboratory to field scale

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

For an optimum design of borehole heat exchangers (BHE) of ground-source heat pump systems, the thermal properties of the ground have to be determined. Thermal properties are typically estimated or measured in the laboratory or in the field. However, the determined values might deviate depending on the scale of observation. Thus, it is important to investigate scale effects. This study determines the thermal conductivity determination of silty sandstone from laboratory to field scale. Thermal conductivity and thermal capacity varying with water saturation are initially investigated in the laboratory. Results show that thermal conductivity increases obviously with increasing water saturation. In addition, effective thermal conductivity of the ground is estimated by a thermal response test in field resulting in a thermal conductivity (λ) of 1.84 W/m K. By comparison with the laboratory results (λ = 2.23 W/m K), the field-derived thermal conductivity shows lower values indicating a scale effect. Microscope image and wave velocity are also studied to investigate the structure of the sandstone. These results indicate that there exist a large numbers of fractures in the silty sandstone, implying that the thermal response test is largely affected by these fractures. Hence, the scale effects should be carefully considered in evaluation of thermal conductivity in particular for fractured porous rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abu-Hamdeh NH, Khdair AI, Reeder RC (2001) A comparison of two methods used to evaluate thermal conductivity for some soils. Int J Heat Mass Transf 44:1073–1078

    Article  Google Scholar 

  • Bertermann D, Bialas C, Morper-Busch L, Klug H, Rohn J, Stollhofen MP, Jaudin F, Maragna CM, Einarsson GM, Vikingsson S, Orosz L, Jordan G, Vîjdea AM, Lewis M, Lawley RS, Roinevirta S, Declercq PZ, Petitclerc E, Zacherl A, Arvanitis AA, Stefouli M (2013) ThermoMap—an open-source web mapping application for illustrating the very shallow geothermal potential in Europe and selected case study areas. Eur Geotherm Congr, Pisa, pp 1–7

    Google Scholar 

  • Bertermann D, Klug H, Morper-Busch L, Bialas C (2014) Modelling vSGPs (very shallow geothermal potentials) in selected CSAs (case study areas). Energy 71:226–244

    Article  Google Scholar 

  • Bertermann D, Klug H, Morper-Busch L (2015) A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renew Energy 75:335–347

    Article  Google Scholar 

  • Baver LD, Gardner WH, Gardner WR (1972) Thermal conductivity of soil in situ. Soil science 73, Physics, 4th edn. Wiley, New York

    Google Scholar 

  • Blum P, Campillo G, Kölbel T (2011) Techno-economic and spatial analysis of vertical ground source heat pump systems in Germany. Energy 36:3002–3011

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC, Feshbach H (1962) Conduction of heat in solids. Phys Today 15(11):17

    Article  Google Scholar 

  • Choi W, Ooka R (2015) Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method. Appl Energy 148:476–488

    Article  Google Scholar 

  • Daniel IM, Rowlands RE (1975) On wave and fracture propagation in rock media. Exp Mech 15:449–457

    Article  Google Scholar 

  • Eklöf C, Gehlin S (1996) TED—a mobile equipment for thermal response test. Masters Thesis, Luleå University of Technology, Sweden

  • Esen H, Inalli M (2009) In-situ thermal response test for ground source heat pump system in Elazığ, Turkey. Energy Build 41(4):395–401

    Article  Google Scholar 

  • Gehlin S (2002) Thermal response test: method development and evaluation. Doctoral thesis. Luleå University of Technology, Luleå

  • Gehlin SEA, Hellström G (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energ 28:2221–2238

    Article  Google Scholar 

  • Hellström G (1991) Ground heat storage: thermal analyses of duct storage systems. Dissertation, Department of Applied Mathematical Physics, University of Lund, Sweden

  • Huang JH (2010) Effective thermal conductivity of porous rocks. Can Pub Policy 36(2):3–10

    Google Scholar 

  • Kersten MS (1949) Thermal properties of soils. Bulletin 28, LII/21. University of Minnesota, Minnesota, p 227

    Google Scholar 

  • Luo J, Rohn J, Bayer M, Priess A, Xiang W (2014) Analysis on performance of borehole heat exchanger in a layered subsurface. Appl Energy 123:55–65

    Article  Google Scholar 

  • Man Y, Yang HX, Wang JG (2010) Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong. Appl Energy 87:2826–2833

    Article  Google Scholar 

  • Menberg K, Steger H, Zorn R, Reuß M, Proell M, Bayer P, Blum P (2013) Bestimmung der Wärmeleitfähigkeit im Untergrund durch Labor- und Feld-versuche und anhand theoretischer Modelle. Grundwasser 18:103–116

    Article  Google Scholar 

  • Midttomme K, Roaldset E, Aagaard P (1998) Thermal conductivity of selected claystones and mudstones from England. Clay Miner 33:131–145

    Article  Google Scholar 

  • Münkel P (2012) Untersuchung der thermischen Leitfähigkeit an Bohrkernen für die Eignung der flachen Geothermie. Bachelor-Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (unpublished)

  • Popov YA, Berezin VV, Semionov VG, Korosteliov VM (1985) Complex detailed investigations of the thermal properties of rocks on the basis of a moving point source. Izv Phys Solid Earth 1:64–70

    Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999a) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306:345–366

    Article  Google Scholar 

  • Popov YA, Pribnow DFC, Sass JH, Williams CF, Burkhardt H (1999b) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276

    Article  Google Scholar 

  • Popov YA, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161

    Article  Google Scholar 

  • Sanner B, Hellström G, Spitler JD, Gehlin SEA (2005) Thermal response test—current status and world-wide application. Proceedings of the world geothermal energy congress. Antalya, Turkey, pp 1–9

    Google Scholar 

  • Sarbu L, Sebarchievici C (2014) General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build 70:441–454

    Article  Google Scholar 

  • Shonder JA, Beck JV (1999) Determining effective soil formation thermal properties from field data using a parameter estimation technique. ASHRAE Trans 105(1):458–466

    Google Scholar 

  • Spitler JD, Gehlin SEA (2015) Thermal response testing for ground source heat pump systems—an historical review. Renew Sustain Energy Rev 50:1125–1137

    Article  Google Scholar 

  • Stauffer F, Bayer P, Blum P, Molina-Giraldo N, Kinzelbach W (2013) Thermal use of shallow groundwater. CRC Press Taylor & Francis Group, Boca Raton, pp 16–18

    Book  Google Scholar 

  • Usowicz B, Kossowski J, Baranowski P (1996) Spatial variability of soil thermal properties in cultivated fields. Soil Tillage Res 39(1–2):85–100

    Article  Google Scholar 

  • Usowicz B, Lipiec J, Usowicz JB (2008) Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planet Space Sci 56(3–4):438–447

    Article  Google Scholar 

  • VDI-4640 (2001a) Thermische Nutzung des Untergrundes: Erdgekoppelte Wärmepumenanlagen (Thermal use of the underground: Ground Source Heat Pump Systems). Duesseldorf, Germany Part 2: pp. 41

  • VDI-4640 (2001b) Thermische Nutzung des Unterirdische Thermal Energie speicher (Utilization of the subsurface for thermal purposes: Underground thermal energy storage). Duesseldorf, Germany, Part 3, pp 41–42

  • Vogel HJ, Weller U, Schlüter S (2010) Quantification of soil structure based on Minkowski functions. Comput Geosci 36(10):1236–1245

    Article  Google Scholar 

  • Wagner V, Bayer P, Kübert M, Blum P (2012) Numerical sensitivity study of thermal response tests. Renew Energy 41:245–253

    Article  Google Scholar 

  • Wagner V, Blum P, Kübert M, Bayer P (2013) Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers. Geothermics 46:22–31

    Article  Google Scholar 

  • Xiang W, Cui DS, Liu QB, Lu XS, Cao LJ (2010) Theory and practice of ionic soil stabilizer reinforcing special clay. J Earth Sci 21(6):882–887

    Article  Google Scholar 

  • Yang H, Cui P, Fang Z (2010) Vertical-borehole ground-coupled heat pumps: a review of models and systems. Appl Energy 87(1):16–27

    Article  Google Scholar 

  • Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10(3):197–207

    Article  Google Scholar 

  • Zeng HY, Diao NR, Fang ZH (2002) A finite line-source model for boreholes in geothermal heat exchangers. Heat Transf Asian Res 31:558–567

    Article  Google Scholar 

  • Zhao H, Wu Q, Zhu WJ, Wen T, Li SH, Jia DS (2010) Xinyang city chracteristics and causes of temperature changes. Chin Agric Sci Bull 21(6):346–350

    Google Scholar 

Download references

Acknowledgments

Special thanks go to the National Natural Science Foundation of China (NSFC) for the funding of this work (authorized no. 41502238). The project was also supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) nos. CUGL150818 and CUGL 150610. Furthermore, we thank the European Regional Development Fund “Investition in Ihre Zukunft” for co-financing this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Luo.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage II” guest edited by Zhonghe Pang, Yanlong Kong, Haibing Shao and Olaf Kolditz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Jia, J., Zhao, H. et al. Determination of the thermal conductivity of sandstones from laboratory to field scale. Environ Earth Sci 75, 1158 (2016). https://doi.org/10.1007/s12665-016-5939-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5939-0

Keywords