Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, assuming noncooperative behavior of the decision makers, solution methods for decision-making problems in hierarchical organizations under fuzzy random environments are presented. Taking into account the vagueness of judgments of decision makers, fuzzy goals are introduced into the formulated fuzzy random noncooperative bilevel linear programming problems. Considering the possibility and necessity measure that each objective function fulfills, the corresponding fuzzy goal, the fuzzy random bilevel linear programming problems to minimize each objective function with fuzzy random variables, are transformed into stochastic bilevel programming problems to maximize the degree of possibility and necessity that each fuzzy goal is fulfilled. Through expectation optimization in stochastic programming, which is suitable for risk-neutral decision makers, the transformed stochastic bilevel programming problems can be reduced to deterministic bilevel programming problems. For the transformed problems, extended concepts of Stackelberg solutions are introduced and computational methods are also presented. It is shown that the extended Stackelberg solutions can be obtained through the combined use of the variable transformation method and the Kth best algorithm for bilevel linear programming problems. A numerical example is provided to illustrate the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Simaan M, Cruz JB Jr (1973) On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl 11:533–555

    Article  MathSciNet  MATH  Google Scholar 

  2. Shimizu K, Ishizuka Y, Bard JF (1997) Nondifferentiable and two-level mathematical programming. Kluwer, Boston

    Book  MATH  Google Scholar 

  3. Sakawa M, Nishizaki I (2009) Cooperative and noncooperative multi-level programming. Springer, New York

    Google Scholar 

  4. Bialas WF, Karwan MH (1984) Two-level linear programming. Manag Sci 30:1004–1020

    Article  MathSciNet  MATH  Google Scholar 

  5. Bard JF, Falk JE (1982) An explicit solution to the multi-level programming problem. Comput Oper Res 9:77–100

    Article  MathSciNet  Google Scholar 

  6. Bard JF, Falk JE (1990) A branch and bound algorithm for the bilevel programming problem. SIAM J Sci Stat Comput 11:281–292

    Article  MATH  Google Scholar 

  7. Hansen P, Jaumard B, Savard G (1992) New branch-and-bound rules for liner bilevel programming. SIAM J Sci Stat Comput 13:1194–1217

    Article  MathSciNet  MATH  Google Scholar 

  8. White DJ, Anandalingam G (1993) A penalty function approach for solving bi-level linear programs. J Glob Optim 3:397–419

    Article  MathSciNet  MATH  Google Scholar 

  9. Nishizaki I, Sakawa M (1999) Stackelberg solutions to multiobjective two-level linear programming problems. J Optim Theory Appl 103:161–182

    Article  MathSciNet  MATH  Google Scholar 

  10. Nishizaki I, Sakawa M (2000) Computational methods through genetic algorithms for obtaining Stackelberg solutions to two-level mixed zero-one programming problems. Cybern Syst 31:203–221

    Article  MATH  Google Scholar 

  11. Gümüs ZH, Floudas CA (2001) Global optimization of nonlinear bilevel programming problems. J Glob Optim 20:1–31

    Article  MATH  Google Scholar 

  12. Nishizaki I, Sakawa M, Katagiri H (2003) Stackelberg solutions to multiobjective two-level linear programming problems with random variable coefficients. Central Eur J Oper Res 11:281–296

    MathSciNet  MATH  Google Scholar 

  13. Colson B, Marcotte P, Savard G (2005) A trust-region method for nonlinear bilevel programming: algorithm and computational experience. Comput Optim Appl 30:211–227

    Article  MathSciNet  MATH  Google Scholar 

  14. Faisca NP, Dua V, Rustem B, Saraiva PM, Pistikopoulos EN (2007) Parametric global optimisation for bilevel programming. J Glob Optim 38:609–623

    Article  MathSciNet  MATH  Google Scholar 

  15. Nicholls MG (1996) The applications of non-linear bi-level programming to the aluminium industry. J Glob Optim 8:245–261

    Article  MathSciNet  MATH  Google Scholar 

  16. Amouzegar MA, Moshirvaziri K (1999) Determining optimal pollution control policies: an application of bilevel programming. Eur J Oper Res 119:100–120

    Article  MATH  Google Scholar 

  17. Dempe S, Bard JF (2001) Bundle trust-region algorithm for bilinear bilevel programming. J Optim Theory Appl 110:265–268

    Article  MathSciNet  MATH  Google Scholar 

  18. Fampa M, Barroso LA, Candal D, Simonetti L (2008) Bilevel optimization applied to strategic pricing in competitive electricity markets. Comput Optim Appl 39:121–142

    Article  MathSciNet  MATH  Google Scholar 

  19. Roghanian E, Sadjadi SJ, Aryanezhad MB (2007) A probabilistic bi-level linear multi-objective programming problem to supply chain planning. Appl Math Comput 188:786–800

    Article  MathSciNet  MATH  Google Scholar 

  20. Sakawa M (1993) Fuzzy sets and interactive multiobjective optimization. Plenum Press, New York

    MATH  Google Scholar 

  21. Sakawa M (2000) Large scale interactive fuzzy multiobjective programming. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  22. Sakawa M (2001) Genetic algorithms and fuzzy multiobjective optimization. Kluwer, Boston

    Book  Google Scholar 

  23. Stancu-Minasian IM (1984) Stochastic programming with multiple objective functions. D. Reidel Publishing Company, Dordrecht

    MATH  Google Scholar 

  24. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, London

    MATH  Google Scholar 

  25. Slowinski R, Teghem J (eds) (1990) Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty. Kluwer, Dordrecht

  26. Sakawa M, Kato K (2009) Interactive fuzzy programming for stochastic two-level linear programming problems through probability maximization. International Institute for Applied Systems Analysis (IIASA), Interim Report IR-09-013

  27. Kwakernaak H (1978) Fuzzy random variables—I. Definitions and theorems. Inf Sci 15:1–29

    Article  MathSciNet  MATH  Google Scholar 

  28. Kruse R, Meyer KD (1987) Statistics with vague data. D. Riedel Publishing Company, Dordrecht

    Book  MATH  Google Scholar 

  29. Puri ML, Ralescu DA (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Y-K, Liu B (2003) Fuzzy random variables: a scalar expected value operator. Fuzzy Optim Decis Making 2:143–160

    Article  Google Scholar 

  31. Gil MA, Lopez-Diaz M, Ralescu DA (2006) Overview on the development of fuzzy random variables. Fuzzy Sets Syst 157:2546–2557

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang G-Y, Qiao Z (1993) Linear programming with fuzzy random variable coefficients. Fuzzy Sets Syst 57:295–311

    Article  MathSciNet  MATH  Google Scholar 

  33. Qiao Z, Zhang Y, Wang G-Y (1994) On fuzzy random linear programming. Fuzzy Sets Syst 65:31–49

    Article  MathSciNet  MATH  Google Scholar 

  34. Luhandjula MK (1996) Fuzziness and randomness in an optimization framework. Fuzzy Sets and Syst 77:291–297

    Article  MathSciNet  MATH  Google Scholar 

  35. Luhandjula MK, Gupta MM (1996) On fuzzy stochastic optimization. Fuzzy Sets Syst 81:47–55

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu B (2001) Fuzzy random chance-constrained programming. IEEE Trans Fuzzy Syst 9:713–720

    Article  Google Scholar 

  37. Liu B (2001) Fuzzy random dependent-chance programming. IEEE Trans Fuzzy Syst 9:721–726

    Article  Google Scholar 

  38. Rommelfanger H (2007) A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values. Fuzzy Sets Syst 156:1892–1904

    Article  MathSciNet  Google Scholar 

  39. Luhandjula MK (2006) Fuzzy stochastic linear programming: survey and future research directions. Eur J Oper Res 174:1353–1367

    Article  MathSciNet  MATH  Google Scholar 

  40. Katagiri H, Ishii H, Sakawa M (2004) On fuzzy random linear knapsack problems. Central Eur J Oper Res 12:59–70

    MathSciNet  MATH  Google Scholar 

  41. Katagiri H, Sakawa M, Ishii H (2004) Fuzzy random bottleneck spanning tree problems using possibility and necessity measures. Eur J Oper Res 152:88–95

    Article  MathSciNet  MATH  Google Scholar 

  42. Katagiri H, Sakawa M, Kato K, Nishizaki I (2004) A fuzzy random multiobjective 0-1 programming based on the expectation optimization model using possibility and necessity measures. Math Comput Model 40:411–421

    Article  MathSciNet  MATH  Google Scholar 

  43. Katagiri H, Mermri EB, Sakawa M, Kato K, Nishizaki I (2005) A possibilistic and stochastic programming approach to fuzzy random MST problems. IEICE Trans Inf Syst E88-D:1912–1919

    Article  Google Scholar 

  44. Katagiri H, Sakawa M, Ishii H (2005) A study on fuzzy random portfolio selection problems using possibility and necessity measures. Sci Math Jpn 61:361–369

    MathSciNet  MATH  Google Scholar 

  45. Katagiri H, Sakawa M, Nishizaki I (2006) Interactive decision making using possibility and necessity measures for a fuzzy random multiobjective 0-1 programming problem. Cybern Syst 37:59–74

    Article  Google Scholar 

  46. Katagiri H, Sakawa M, Kato K, Nishizaki I (2008) Interactive multiobjective fuzzy random linear programming: maximization of possibility and probability. Eur J Oper Res 188:530–539

    Article  MathSciNet  MATH  Google Scholar 

  47. Katagiri H, Sakawa M (2011) Interactive multiobjective fuzzy random linear programming through the level set-based probability model. Inf Sci 181:1641–1650

    Article  MathSciNet  MATH  Google Scholar 

  48. Ammar EE (2008) On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem. Inf Sci 178:468–484

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu J, Liu Y (2008) Multi-objective decision making model under fuzzy random environment and its application to inventory problems. Inf Sci 178:2899–2914

    Article  MATH  Google Scholar 

  50. Sakawa M, Kato K (2009) Interactive fuzzy random two-level linear programming through fractile criterion optimization. International Institute for Applied Systems Analysis (IIASA), Interim Report IR-09-020

  51. Sakawa M, Kato K (2009) Fuzzy random noncooperative two-level linear programming through absolute deviation minimization using possibility and necessity. International Institute for Applied Systems Analysis (IIASA), Interim Report IR-09-021

  52. Charnes A, Cooper WW (1962) Programming with linear fractional functionals. Nav Res Logist Q 9:181–186

    Article  MathSciNet  MATH  Google Scholar 

  53. Calvete HI, Gale C (2004) A note on bilevel linear fractional programming problem. Eur J Oper Res 152:296–299

    Article  MathSciNet  MATH  Google Scholar 

  54. Stancu-Minasian IM (1992) Fractional programming. Kluwer, Dordrecht

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Sakawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakawa, M., Katagiri, H. & Matsui, T. Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity. Int. J. Mach. Learn. & Cyber. 3, 183–192 (2012). https://doi.org/10.1007/s13042-011-0055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-011-0055-7

Keywords