Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On bijective correspondence between IF-preorders and saturated IF-topologies

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The purpose of the present work is to provide some characterizations of the condition used to show the bijective correspondence between the family of all IF-preorders and the family of all saturated IF-topologies on a nonempty set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abo-Tabl EA (2012) Rough sets and topological spaces based on similarity. Int J Mach Learn Cybern. doi:10.1007/s13042-012-0107-7

  2. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MathSciNet  MATH  Google Scholar 

  3. Bustince H, Burillo P (1996) Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst 78:293–303

    Article  MathSciNet  MATH  Google Scholar 

  4. Cock MD, Cornelis C, Kerre EE (2005) Intuitionistic fuzzy relational images. Stud Comput Intell 2:129–145

    Google Scholar 

  5. Coker D (1997) An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst 88:81–89

    Article  MathSciNet  MATH  Google Scholar 

  6. Deschrijver G, Cornelis C, Kerre EE (2004) On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans Fuzzy Syst 12:45–61

    Article  Google Scholar 

  7. Dubois D, Prade H (1990) Rough fuzzy set and fuzzy rough set. Int J Gen Syst 17:191–209

    Article  MATH  Google Scholar 

  8. Dubois D, Gottwald S, Hajek P, Kacprzyk J, Prade H (2005) Terminological difficulties in fuzzy set theory—the case of intuitionistic fuzzy sets. Fuzzy Sets Syst 156:485–491

    Article  MathSciNet  MATH  Google Scholar 

  9. Kondo M (2006) On the structure of generalized rough sets. Inf Sci 176:586–600

    Article  MathSciNet  Google Scholar 

  10. Lai H, Zhang D (2006) Fuzzy preorder and fuzzy topology. Fuzzy Sets Syst 157:1865–1885

    Article  MathSciNet  MATH  Google Scholar 

  11. Pawlak Z (1982) Rough sets. Int J Comp Inf Sci 11:341–356

    Article  MathSciNet  MATH  Google Scholar 

  12. Qin K, Pei Z (2005) On the topological properties of fuzzy rough sets. Fuzzy Sets Syst 151:601–613

    Article  MathSciNet  MATH  Google Scholar 

  13. Qin K, Yang J, Pei Z (2008) Generalized rough sets based on reflexive and transitive relations. Inf Sci 178:4138–4141

    Article  MathSciNet  MATH  Google Scholar 

  14. She YH, Wang GJ (2009) An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput Math Appl 58:189–201

    Article  MathSciNet  MATH  Google Scholar 

  15. Srivastava AK, Tiwari SP (2003) On relationships among fuzzy approximation operators, fuzzy topology, and fuzzy automata. Fuzzy Sets Syst 138:197–204

    Article  MathSciNet  MATH  Google Scholar 

  16. Srivastava AK, Tiwari SP (2010) IF-topologies and IF-automata. Soft Comput 14:571–578

    Article  MATH  Google Scholar 

  17. Tiwari SP, Srivastava AK (2013) Fuzzy rough sets,fuzzy preorders and fuzzy topologies. Fuzzy Sets Syst 210:63–68

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu WZ (2005) A study on relationship between fuzzy rough approximation operators and fuzzy topological spaces. Fuzzy Syst Knowl Discov 3613:167–174

    Google Scholar 

  19. Yao YY (1998) Constructive and algebraic methods of the theory of rough sets. Inf Sci 109:21–47

    Article  MATH  Google Scholar 

  20. Yeung DS, Chen D, Tsong ECC, Lee JWT, Wang XZ (2005) On the generalization of fuzzy rough sets. IEEE Trans Fuzzy Syst 13:343–361

    Article  Google Scholar 

  21. Wu WZ, Zhou L (2011) On intuitionistic fuzzy topologies based on intuitionistic fuzzy reflexive and transitive relations. Soft Comput 15:1183–1194

    Article  MATH  Google Scholar 

  22. Zhou L, Wu WZ (2008) On generalized intuitionistic fuzzy rough approximation operators. Inf Sci 178:2448–2465

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author acknowledge with thanks the support received through a research grant, provided by the Council of Scientific and Industrial Research, New Delhi, under which this work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S.P., Singh, A.K. On bijective correspondence between IF-preorders and saturated IF-topologies. Int. J. Mach. Learn. & Cyber. 4, 733–737 (2013). https://doi.org/10.1007/s13042-013-0157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0157-5

Keywords