Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Variable precision intuitionistic fuzzy rough sets model and its application

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Rough set theory is an important mathematical tool to deal with insufficient and incomplete information. The concepts of intuitionistic fuzzy rough sets and variable precision rough sets are very useful in the study of intelligent systems. The aim of this paper is to present a new extension of the rough set theory by means of integrating the variable precision rough set theory with the intuitionistic fuzzy rough set theory, i.e., the variable precision intuitionistic fuzzy rough set model is presented based on the intuitionistic fuzzy inclusion sets and intuitionistic fuzzy inclusion ratio which are defined in this paper, and by employing the intuitionistic fuzzy implicator and the intuitionistic fuzzy t-norm. Meanwhile, the approximation quality and attribute reduction of the variable precision intuitionistic fuzzy rough sets are defined. It shows that the results obtained in this paper extend the previous related conclusions. Finally, an example is given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pawlak Z(1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MATH  MathSciNet  Google Scholar 

  2. Ziarko WP (1993) Variable precision rough set model. J Comput Syst Sci 46:39–59

    Article  MATH  MathSciNet  Google Scholar 

  3. Katzberg JD, Ziarko WP (1994) Variable precision rough sets with asymmetric bounds. In: Rough sets, fuzzy sets and knowledge discovery. Springer, Berlin, pp 167–177

  4. Beynon M (2001) Reducts with the variable precision rough sets model: a further investigation. Eur J Oper Res 134:592–605

    Article  MATH  Google Scholar 

  5. Mi J, Wu W, Zhang W (2004) Approaches to knowledge reduction based on variable precision rough set model. Inf Sci 159:255–272

    Article  MATH  MathSciNet  Google Scholar 

  6. Gong Z, Sun B, Shao Y (2005) Variable precision rough set model based on general relations. J Lanzhou Univ Sci 41:402–411

    MathSciNet  Google Scholar 

  7. Dubois D, Prade H (1992) Putting rough sets and fuzzy sets together. In: Slowiński R (ed) Intelligent decision support, handbook of applications and advances of the sets theory. Kluwer Academic Publishers, Boston, pp 233–250

  8. Nakamura A (1992) Application of fuzzy-rough classifications to logics. In: Slowi\(\mathrm{\acute{n}}\)ski R (ed) Intelligent decision support, handbook of applications and advances of the rough sets. Kluwer Academic Publishers, Boston

  9. Morsi NN, Yakout MM (1998) Axiomatics for fuzzy rough sets. Fuzzy Sets Syst 100:327–342

    Article  MATH  MathSciNet  Google Scholar 

  10. Radzikowska AM, Kerre EE (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126:137–155

    Article  Google Scholar 

  11. Ouyang Y, Wang ZD, Zhang HP (2010) On fuzzy rough sets based on tolerance relations. Inf Sci 180:532–542

    Article  MATH  Google Scholar 

  12. Mi JS, Zhang WX (2004) An axiomatic characterization of a fuzzy generalization of rough sets. Inf Sci 160:235–249

    Article  MATH  MathSciNet  Google Scholar 

  13. Xu WH, Sun WX, Liu YF (2012) Fuzzy rough set models over two universes. Int J Mach Learn Cybern. doi:10.1007/s13042-012-0129-1.

  14. Qian YH, Liang JY, Wei W (2012) Consistency-preserving attribute reduction in fuzzy rough set framework. Int J Mach Learn Cybern. doi:10.1007/s13042-012-0090-z

  15. Sun B, Gong Z, Chen D (2008) Fuzzy rough set theory for the interval-valued fuzzy information systems. Inf Sci 178:2794–2815

    Article  MATH  MathSciNet  Google Scholar 

  16. Gong Z, Sun B, Chen D (2008) Rough set theory for the interval-valued fuzzy information systems. Inf Sci 178:1968–1985

    Article  MATH  MathSciNet  Google Scholar 

  17. Mieszkowicz-Rolka A, Rolka L (2003) Fuzziness in information systems. Electron Notes Theor Comput Sci 82:164–173

    Article  Google Scholar 

  18. Mieszkowicz-Rolka A, Rolka L (2004) Variable precision fuzzy rough sets. In: Transactions on rough sets I. Springer, Heidelberg, pp 1–17

  19. Mieszkowicz-Rolka A, Rolka L (2004) Fuzzy implicator operator variable precision fuzzy rough set model. In: Artificial intelligence and soft computing-ICAISC. Springer, Heidelberg, pp 498–503

  20. Mieszkowicz-Rolka A., Rolka L (2008) Fuzzy rough approximations of process data. Int J Approx Reason 49:301–315

    Article  MATH  MathSciNet  Google Scholar 

  21. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  MATH  MathSciNet  Google Scholar 

  22. Atanassov K (1989) More on intuitionistic fuzzy set. Fuzzy Sets Syst 33:37–45

    Article  MATH  MathSciNet  Google Scholar 

  23. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 31:343–349

    Article  MathSciNet  Google Scholar 

  24. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  MathSciNet  Google Scholar 

  25. Coker D (1996) Fuzzy rough sets are intuitionistic L-fuzzy sets. Fuzzy Sets Syst 96:381–383

    Article  MathSciNet  Google Scholar 

  26. Zhou L, Wu W, Zhang W (2009) On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators. Inf Sci 179:833–808

    Google Scholar 

  27. Wang X, Dong C, Fan T (2007) Training T-S norm neural networks to refine weights for fuzzy if–then rules. Neurocomputing 70:2581–2587

    Article  Google Scholar 

  28. Cornelis C, Deschrijver G, Kerre EE (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reason 35:55–95

    Article  MATH  Google Scholar 

  29. Atanassov K (1999) Intuitionistic fuzzy sets: theory and applicatons. Physica-Verlag, Heidelberg

  30. Zhou L, Wu W (2011) Characterization of rough set approximations in Atanassov intuitionistic fuzzy set theory. Comput Math Appl 62:282–296

    Article  MATH  MathSciNet  Google Scholar 

  31. Atanassov K (1994) Operators over the intuitionistic fuzzy sets. Inf Sci 61:137–142

    MATH  MathSciNet  Google Scholar 

  32. Bustince H, Burillo P (1996) Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst 78:293–303

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees and Professor Xizhao Wang, Editor-in-Chief, for providing very helpful comments and suggestions. This work is supported by National Natural Science Fund of China (71061013, 61262022), the Natural Scientific Fund of Gansu Province of China (1208RJZA251) and the Scientific Research Project of Northwest Normal University (NWNU-KJCXGC-03-61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtai Gong.

Additional information

This work is supported by National Natural Science Fund of China (71061013, 61262022), the Natural Scientific Fund of Gansu Province of China (1208RJZA251) and the Scientific Research Project of Northwest Normal University (NWNU-KJCXGC-03-61).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Z., Zhang, X. Variable precision intuitionistic fuzzy rough sets model and its application. Int. J. Mach. Learn. & Cyber. 5, 263–280 (2014). https://doi.org/10.1007/s13042-013-0162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-013-0162-8

Keywords