Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A transplantation of subject-independent model in cross-platform BCI

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

With the development of wearable technology, portable wireless systems have been used gradually for collecting electroencephalogram (EEG) signals. However, the introduction of portable collection devices always means a descent in signal-to-noise ratio (SNR) of EEG. Subject-independent brain-computer interface (BCI) avoids conventional calibration procedure for new users. However, whether subject-independent model can be used in cross-platform BCI has not been discussed so far. This paper transplanted the subject-independent model from a high-SNR platform to a lower one for recognition in P300-Speller. After comparing their EEG features elicited from diverse collection platforms, a model adjustment strategy was proposed to increase recognition accuracy. By model adjustment, the average accuracy was 85.00% in online spell experiments. The results indicate it is feasible for subject-independent model transplantation, especially after model adjustment strategy. It provides technology supported for further development of cross-platform BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vidal JJ (1973) Toward direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180

    Article  Google Scholar 

  2. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  3. Wolpaw JR, Wolpaw EW (2012) Brain–computer interfaces, principles and practice. Oxford University Press, New York

    Google Scholar 

  4. Jian M, Lam K, Dong J, Shen L (2015) visual-patch-attention-aware saliency detection. IEEE T Cybernet 45(8):1575–1586

    Article  Google Scholar 

  5. Jian M, Lam K (2014) Face-image retrieval based on singular values and potential-field representation. Signal Process 100:9–15

    Article  Google Scholar 

  6. Jian M, Lam K (2015) Simultaneous hallucination and recognition of low-resolution faces based on singular value decomposition. IEEE T Circ Syst Vid 25(11):1761–1772

    Article  Google Scholar 

  7. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  8. Allison BZ, Wolpaw EW, Wolpaw JR (2014) Brain–computer interface systems: progress and prospects. Expert Rev Med Devic 4(4):463–474

    Article  Google Scholar 

  9. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kübler A (2008) A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916

    Article  Google Scholar 

  10. Vaughan TM, Mcfarland DJ, Schalk G, Sarnacki WA, Krusienski DJ, Sellers EW, Wolpaw JR (2006) The Wadsworth BCI research and development program: at home with BCI. IEEE Trans Neur Sys Reh 14(2):229–233

    Article  Google Scholar 

  11. Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    Article  Google Scholar 

  12. Ron-Angevin R, Varona-Moya S, Da SL (2015) Initial test of a T9-like P300-based speller by an ALS patient. J Neural Eng 12(4):46023

    Article  Google Scholar 

  13. Lu S, Guan C, Zhang H (2009) Unsupervised brain computer interface based on intersubject information and online adaptation. IEEE Trans Neural Syst Rehabil Eng 17(2):135–145

    Article  Google Scholar 

  14. Kindermans PJ, Verstraeten D, Schrauwen B (2012) A bayesian model for exploiting application constraints to enable unsupervised training of a P300-based BCI. PLoS ONE 7(4):e33758

    Article  Google Scholar 

  15. Kindermans PJ, Verschore H, Verstraeten D, Schrauwen B (2012) A P300 BCI for the masses: prior information enables instant unsupervised spelling. In: Advances in neural information processing systems 25: 26th annual conference on neural information processing systems 2012, NIPS 2012, pp 719–727

  16. Kindermans PJ, Tangermann M, Muller KR, Schrauwen B (2014) Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller. J Neural Eng 11(3):35005

    Article  Google Scholar 

  17. Jin J, Sellers EW, Zhang Y, Daly I, Wang X, Cichocki A (2013) Whether generic model works for rapid ERP-based BCI calibration. J Neurosci Methods 212(1):94–99

    Article  Google Scholar 

  18. Xu M, Liu J, Chen L, Qi H, He F, Zhou P, Wan B, Ming D (2016) Incorporation of inter-subject information to improve the accuracy of subject-specific P300 classifiers. Int J Neural Syst 26(3):1650010

    Article  Google Scholar 

  19. Liu Y, Jiang X, Cao T, Wan F, Mak PU, Mak PI, Vai MI (2012) Implementation of SSVEP based BCI with Emotiv EPOC. In: 2012 IEEE international conference on virtual environments human–computer interfaces and measurement systems (VECIMS), pp 34–37

  20. Campbell A, Choudhury T, Hu S, Lu H, Mukerjee MK, Rabbi M, Raizada RDS (2010) NeuroPhone: brain–mobile phone interface using a wireless EEG headset. In: ACM SIGCOMM workshop on networking, systems, and applications on mobile handhelds, pp 3–8

  21. Das R, Chatterjee D, Das D, Sinharay A (2014) Cognitive load measurement—a methodology to compare low cost commercial EEG devices. In: International conference on advances in computing, communications and informatics, pp 1188–1194

  22. Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T (2013) Performance of the Emotiv Epoc headset for P300-based applications. Biomed Eng Online 12:56

    Article  Google Scholar 

  23. Zhao Y, Wang Z, Liu J, Chen L, Meng G, Qi H, He F, Zhou P, Ming D (2015) The research on cross-platform transplantation of generic model on subject-independent BCI. In: IEEE international conference on awareness science and technology, pp 190–193

  24. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Meth 167(1):15–21

    Article  Google Scholar 

  25. Oostenveld R, Fries P, Maris E, Schoffelen J (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9

    Article  Google Scholar 

  26. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Meth 134(1):9–21

    Article  Google Scholar 

  27. Blankertz B, Lemm S, Treder M et al (2011) Single-trial analysis and classification of ERP components—a tutorial. NeuroImage 56(2):814–825

    Article  Google Scholar 

  28. Krusienski DJ, Sellers EW, Cabestaing F et al (2006) A comparison of classification techniques for the P300 Speller. J Neural Eng 3:299–305

    Article  Google Scholar 

  29. Blankertz B, Lemm S, Treder M, Haufe S, Müller K (2011) Single-trial analysis and classification of ERP components—a tutorial. Neuroimage 56(2):814–825

    Article  Google Scholar 

  30. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1–R13

    Article  Google Scholar 

  31. Aloise F, Schettini F, Arico P, Salinari S, Babiloni F, Cincotti F (2012) A comparison of classification techniques for a gaze-independent P300-based brain-computer interface. J Neural Eng 9(4):45012

    Article  Google Scholar 

  32. Panicker RC, Puthusserypady S, Sun Y (2010) Adaptation in P300 brain–computer interfaces: a two-classifier cotraining approach. Ieee T Bio-Med Eng 57(12):2927–2935

    Article  Google Scholar 

  33. Raudys S, Duin R (1998) Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recogn Lett 19(5–6):385–392

    Article  MATH  Google Scholar 

  34. Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM T Intel Syst Tec 2(3SI)

  35. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1–2):1–39

    Article  Google Scholar 

  36. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55(3):1147–1154

    Article  Google Scholar 

Download references

Acknowledgements

Research is supported by National Natural Science Foundation of China (No. 91520205, 81222021, 31271062, 31500865, 81571762, 61172008, 81171423, 30970875, 90920015), National Key Technology R&D Program of the Ministry of Science and Technology of China (No.2012BAI34B02), Tianjin Key Technology R&D Program (No. 15ZCZDSY00930, 13JCQNJC13900, 15JCYBJC29600) and Program for New Century Excellent Talents in University of the Ministry of Education of China (No. NCET-10-0618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Qi.

Additional information

Z. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, Z., Zhang, Z. et al. A transplantation of subject-independent model in cross-platform BCI. Int. J. Mach. Learn. & Cyber. 9, 959–967 (2018). https://doi.org/10.1007/s13042-016-0620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-016-0620-1

Keywords