Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using single axioms to characterize (ST)-intuitionistic fuzzy rough approximation operators

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper axiomatic characterizations of relation-based intuitionistic fuzzy rough approximation operators determined by an intuitionistic fuzzy triangular norm T and its dual intuitionistic fuzzy triangular conorm S on \([0, 1]\times [0, 1]\) are proposed. The constructive definitions and properties of S-lower and T-upper intuitionistic fuzzy rough approximation operators are first introduced. Operator-oriented characterizations of (ST)-intuitionistic fuzzy rough approximation operators are then explored. Different sets of independent axioms for characterizing the essential properties of (ST)-intuitionistic fuzzy rough approximation operators generated by various intuitionistic fuzzy relations are presented. Finally, it is examined that these sets of axioms can all be replaced by single axioms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atanassov K (1999) Intuitionistic fuzzy sets: theory and applications. Physica-Verlag, Heidelberg

    Book  MATH  Google Scholar 

  2. Bian XX, Wang P, Yu ZM, Bai XL, Chen B (2015) Characterizations of coverings for upper approximation operators being closure operators. Inf Sci 314:41–54

    Article  MathSciNet  MATH  Google Scholar 

  3. Cornelis C, Cock MD, Kerre EE (2003) Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Syst 20:260–270

    Article  Google Scholar 

  4. Cornelis C, Deschrijver G, Kerre EE (2004) Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int J Approx Reason 35:55–95

    Article  MathSciNet  MATH  Google Scholar 

  5. Deschrijver G, Cornelis C, Kerre EE (2004) On the representation of intuitionistic fuzzy \(t\)-norms and \(t\)-conorms. IEEE Trans Fuzzy Syst 12:45–61

    Article  MATH  Google Scholar 

  6. Gong ZT, Zhang XX (2014) Variable precision intuitionistic fuzzy rough sets model and its application. Int J Mach Learn Cybern 5:263–280

    Article  Google Scholar 

  7. Hooshmandasl MR, Karimi A, Almbardar M, Davvaz B (2013) Axiomatic systems for rough set-valued homomorphisms of associative rings. Int J Approx Reason 54:297–306

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang B, Guo CX, Li HX, Feng GF, Zhou XZ (2016) Hierarchical structures and uncertainty measures for intuitionistic fuzzy approximation space. Inf Sci 336:92–114

    Article  MATH  Google Scholar 

  9. Huang B, Guo CX, Zhuang YL, Li HX, Zhou XZ (2014) Intuitionistic fuzzy multigranulation rough sets. Inf Sci 277:299–320

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang B, Zhuang YL, Li HY, Wei DK (2013) A dominance intuitionistic fuzzy-rough set approach and its applications. Appl Math Model 37:7128–7141

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang DC, Liu D (2015) Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets. Inf Sci 300:28–48

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu GL (2008) Axiomatic systems for rough sets and fuzzy rough sets. Int J Approx Reason 48:857–867

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu GL (2013) Using one axiom to characterize rough set and fuzzy rough set approximations. Inf Sci 223:285–296

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu XD, Pedrycz W, Chai TY, Song ML (2009) The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets. IEEE Trans Knowl Data Eng 21:443–462

    Article  Google Scholar 

  15. Liu Y, Lin Y, Zhao HH (2015) Variable precision intuitionistic fuzzy rough set model and applications based on conflict distance. Expert Syst 32:220–227

    Article  Google Scholar 

  16. Ma ZM, Li JJ, Mi JS (2015) Some minimal axiom sets of rough sets. Inf Sci 312:40–54

    Article  MathSciNet  MATH  Google Scholar 

  17. Mi JS, Leung Y, Zhao HY, Feng T (2008) Generalized fuzzy rough sets determined by a triangular norm. Inf Sci 178:3203–3213

    Article  MathSciNet  MATH  Google Scholar 

  18. Mi JS, Zhang WX (2004) An axiomatic characterization of a fuzzy generalization of rough sets. Inf Sci 160:235–249

    Article  MathSciNet  MATH  Google Scholar 

  19. Morsi NN, Yakout MM (1998) Axiomatics for fuzzy rough sets. Fuzzy Sets Syst 100:327–342

    Article  MathSciNet  MATH  Google Scholar 

  20. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  21. Radzikowska AM, Kerre EE (2002) A comparative study of fuzzy rough sets. Fuzzy Sets Syst 126:137–155

    Article  MathSciNet  MATH  Google Scholar 

  22. She YH, Wang GJ (2009) An axiomatic approach of fuzzy rough sets based on residuated lattices. Comput Math Appl 58:189–201

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun B, Ma W, Liu Q (2013) An approach to decision making based on intuitionistic fuzzy rough sets over two universes. J Oper Res Soc 64:1079–1089

    Article  Google Scholar 

  24. Thiele H (2000) On axiomatic characterisation of crisp approximation operators. Inf Sci 129:221–226

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang LD, Liu XD, Qiu WR (2012) Nearness approximation space based on axiomatic fuzzy sets. Int J Approx Reason 53:200–211

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu WZ (2011) On some mathematical structures of \(T\)-fuzzy rough set algebras in infinite universes of discourse. Fundamenta Informaticae 108:337–369

    MathSciNet  MATH  Google Scholar 

  27. Wu WZ, Gu SM, Li TJ, Xu YH (2014) Intuitionistic fuzzy rough approximation operators determined by intuitionistic fuzzy triangular norms. Lect Notes Artif Intell 8818:653–662

    MATH  Google Scholar 

  28. Wu WZ, Leung Y, Mi JS (2005) On characterizations of \(({\cal{I}}, {\cal{T}})\)-fuzzy rough approximation operators. Fuzzy Sets Syst 15:76–102

    Article  MathSciNet  Google Scholar 

  29. Wu WZ, Leung Y, Shao MW (2013) Generalized fuzzy rough approximation operators determined by fuzzy implicators. Int J Approx Reason 54:1388–1409

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu WZ, Xu YH, Shao MW, Wang GY (2016) Axiomatic characterizations of \((S, T)\)-fuzzy rough approximation operators. Inf Sci 334–335:17–43

    MATH  Google Scholar 

  31. Wu WZ, Zhang WX (2004) Constructive and axiomatic approaches of fuzzy approximation operators. Inf Sci 159:233–254

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu WH, Liu YF, Li TJ (2013) Intuitionistic fuzzy ordered information system. Int J Uncertain Fuzziness Knowl Based Syst 21:367–390

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang B, Hu BQ (2016) A fuzzy covering-based rough set model and its generalization over fuzzy lattice. Inf Sci 367–368:463–486

    Article  Google Scholar 

  34. Yang XP (2007) Minimization of axiom sets on fuzzy approximation operators. Inf Sci 177:3840–3854

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang XP, Li TJ (2006) The minimization of axiom sets characterizing generalized approximation operators. Inf Sci 176:887–899

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang XP, Yang Y (2013) Independence of axiom sets on intuitionistic fuzzy rough approximation operators. Int J Mach Learn Cybern 4:505–513

    Article  Google Scholar 

  37. Yao YY (1998) Constructive and algebraic methods of the theory of rough sets. J Inf Sci 109:21–47

    Article  MathSciNet  MATH  Google Scholar 

  38. Yin YQ, Li HJ, Jun YB (2012) On algebraic structure of intuitionistic fuzzy soft sets. Comput Math Appl 64:2896–2911

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang HD, Xiong LL, Ma WY (2016) Generalized intuitionistic fuzzy soft rough set and its application in decision making. J Comput Anal Appl 20:750–766

    MathSciNet  MATH  Google Scholar 

  40. Zhang YL, Li JJ, Wu WZ (2010) On axiomatic characterizations of three pairs of covering based approximation operators. Inf Sci 180:274–287

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang YL, Luo MK (2011) On minimization of axiom sets characterizing covering-based approximation operators. Inf Sci 181:3032–3042

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang XH, Zhou B, Li P (2012) A general frame for intuitionistic fuzzy rough sets. Inf Sci 216:34–49

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang ZM (2016) Attributes reduction based on intuitionistic fuzzy rough sets. J Intell Fuzzy Syst 30:1127–1137

    Article  MATH  Google Scholar 

  44. Zhou NL, Hu BQ (2016) Axiomatic approaches to rough approximation operators on complete completely distributive lattices. Inf Sci 348:227–242

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou L, Wu WZ (2008) On generalized intuitionistic fuzzy approximation operators. Inf Sci 178:2448–2465

    MathSciNet  MATH  Google Scholar 

  46. Zhou L, Wu WZ (2011) Characterization of rough set approximations in Atanassov intuitionistic fuzzy set theory. Comput Math Appl 62:282–296

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou L, Wu WZ, Zhang WX (2009) On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators. Inf Sci 179:883–898

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu W, Wang FY (2003) Reduction and axiomization of covering generalized rough sets. Inf Sci 152:217–230

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the Editor for their valuable comments and suggestions. This work was supported by grants from the National Natural Science Foundation of China (Nos. 41631179, 61573321, 61272021, 61673396, and 61363056) and the Open Foundation from Marine Sciences in the Most Important Subjects of Zhejiang (No. 20160102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Zhi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WZ., Shao, MW. & Wang, X. Using single axioms to characterize (ST)-intuitionistic fuzzy rough approximation operators. Int. J. Mach. Learn. & Cyber. 10, 27–42 (2019). https://doi.org/10.1007/s13042-017-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0696-2

Keywords