Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This study introduces the evolutionary multi-objective version of seagull optimization algorithm (SOA), entitled Evolutionary Multi-objective Seagull Optimization Algorithm (EMoSOA). In this algorithm, a dynamic archive concept, grid mechanism, leader selection, and genetic operators are employed with the capability to cache the solutions from the non-dominated Pareto. The roulette-wheel method is employed to find the appropriate archived solutions. The proposed algorithm is tested and compared with state-of-the-art metaheuristic algorithms over twenty-four standard benchmark test functions. Four real-world engineering design problems are validated using proposed EMoSOA algorithm to determine its adequacy. The findings of empirical research indicate that the proposed algorithm is better than other algorithms. It also takes into account those optimal solutions from the Pareto which shows high convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The term fitness value is defined as a process which evaluates the population and gives a score or fitness. Whereas, the process is a function which measures the quality of the represented solution.

References

  1. Bin W, Qian C, Ni W, Fan S (2012) The improvement of glowworm swarm optimization for continuous optimization problems. Expert Syst Appl 39(7):6335–6342

    Google Scholar 

  2. Hajiaghaei-Keshteli M, Aminnayeri M (2013) Keshtel algorithm (ka); a new optimization algorithm inspired by keshtels feeding. In Proceeding in IEEE conference on industrial engineering and management systems, pp 2249–2253

  3. Cheraghalipour A, Hajiaghaei-Keshteli M, Paydar MM (2018) Tree growth algorithm (tga): a novel approach for solving optimization problems. Eng Appl Artif Intell 72:393–414

    Google Scholar 

  4. Orouskhani M, Teshnehlab M, Nekoui MA (2019) Evolutionary dynamic multi-objective optimization algorithm based on borda count method. Int J Mach Learn Cybernet 10(8):1931–1959

    Google Scholar 

  5. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  6. Singh P, Dhiman G (2018) A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization Approaches. J Comput Sci 27:370–385

    Google Scholar 

  7. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197

    Google Scholar 

  8. Singh P, Dhiman G (2018) Uncertainty representation using fuzzy-entropy approach: special application in remotely sensed high-resolution satellite images (RSHRSIs). Appl Soft Comput 72:121–139

    Google Scholar 

  9. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl-Based Syst 159:20–50

    Google Scholar 

  10. Dhiman G, Kaur A (2018) Optimizing the design of airfoil and optical buffer problems using spotted hyena optimizer. Designs 2(3):28

    Google Scholar 

  11. Pritpal S, Kinjal R, Gaurav D (2018) A four-way decision-making system for the indian summer monsoon rainfall. Modern Phys Lett B 32(25):2

    Google Scholar 

  12. Chiandussi G, Codegone M, Ferrero S, Varesio FE (2012) Comparison of multi-objective optimization methodologies for engineering applications. Comput Math Appl 63(5):912–942

    MathSciNet  MATH  Google Scholar 

  13. Coello Carlos A, Coello LG, B, Van Veldhuizen David A, et al (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Berlin

    MATH  Google Scholar 

  14. Zhu H, He Z, Jia Y (2016) An improved reference point based multi-objective optimization by decomposition. Int J Mach Learn Cybern 7(4):581–595

    Google Scholar 

  15. Behera SR, Panigrahi BK (2019) A multi objective approach for placement of multiple dgs in the radial distribution system. Int J Mach Learn Cybern 10(8):2027–2041

    Google Scholar 

  16. Gaurav D, Vijay K (2018) Astrophysics inspired multi-objective approach for automatic clustering and feature selection in real-life environment. Modern Phys Lett B 18:50385

    Google Scholar 

  17. Amandeep K, Satnam K, Gaurav D (2018) A quantum method for dynamic nonlinear programming technique using schrödinger equation and monte carlo approach. Modern Phys Lett B 18:50374

    Google Scholar 

  18. Pritpal S, Gaurav D, Amandeep K (2018) A quantum approach for time series data based on graph and Schrödinger equations methods. Modern Phys Lett A 33(35):2

    Google Scholar 

  19. Gaurav D, Sen G, Satnam K (2018) ED-SHO: a framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer. Modern Phys Lett A 33(40):2

    Google Scholar 

  20. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165:169–196

    Google Scholar 

  21. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Google Scholar 

  22. Dhiman G, Kumar V (2019) KnRVEA: a hybrid evolutionary algorithm based on knee points and reference vector adaptation strategies for many-objective optimization. Appl Intell 49(7):2434–2460

    Google Scholar 

  23. Gaurav D, Pritpal S, Harsimran K, Ritika M (2019) DHIMAN: a novel algorithm for economic dispatch problem based on optimization method using monte carlo simulation and astrophysics concepts. Modern Phys Lett A 34(04):2

    Google Scholar 

  24. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395

    MathSciNet  MATH  Google Scholar 

  25. Gaurav D (2019) MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell 2:1–19

    MathSciNet  Google Scholar 

  26. Pritpal S, Gaurav D, Sen G, Ritika M, Harsimran K, Amandeep K, Harmanpreet K, Jaswinder S, Napinder S (2019) A hybrid fuzzy quantum time series and linear programming model: special application on TAIEX index Dataset. Modern Phys Lett A 34(25):2

    MathSciNet  MATH  Google Scholar 

  27. Gaurav D (2019) ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 2:1–31

    MathSciNet  Google Scholar 

  28. Dhiman G (2019) Multi-objective metaheuristic approaches for data clustering in engineering application (s). PhD thesis

  29. Algorithm BOS (2019) Mohammad Dehghani, Zeinab Montazeri, Om Parkash Malik, Gaurav Dhiman, and Vijay Kumar. BOSA. Int J Innov Technol Explor Eng 9:5306–5310

    Google Scholar 

  30. Maini R, Dhiman G (2018) Impacts of artificial intelligence on real-life problems. Int J Adv Res Innov Ideas Educ 4:291–295

    Google Scholar 

  31. Garg M, Dhiman G (2020) Deep convolution neural network approach for defect inspection of textured surfaces. J Inst Electron Comput 2:28–38

    Google Scholar 

  32. Kaur S, Awasthi LK, Sangal AL, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541

    Google Scholar 

  33. Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Saf 91(9):992–1007

    Google Scholar 

  34. Wang C, Wang Y, Wang K, Yang Y, Tian Y (2019) An improved biogeography/complex algorithm based on decomposition for many-objective optimization. Int J Mach Learn Cybernet 10(8):1961–1977

    Google Scholar 

  35. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    MathSciNet  Google Scholar 

  36. Coello CAC (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36

    Google Scholar 

  37. Chandrawat RK, Kumar R, Garg BP, Dhiman G, Kumar S (2017) An Analysis of Modeling and Optimization Production Cost through Fuzzy Linear Programming Problem with Symmetric and Right Angle Triangular Fuzzy Number. In Proceedings of Sixth International Conference on Soft Computing for Problem Solving, pages 197–211. Springer

  38. Pritpal S, Gaurav D (2017) A Fuzzy-LP approach in time series forecasting. International conference on pattern recognition and machine intelligence. Springer, Berlin, pp 243–253

    Google Scholar 

  39. Dhiman G, Kaur A (2017) Spotted Hyena Optimizer for Solving Engineering Design Problems. In 2017 international conference on machine learning and data science (MLDS), pages 114–119. IEEE

  40. Handl J, Kell DB, Knowles J (2007) Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinform 4(2):279–292

    Google Scholar 

  41. Luh G-C, Chueh C-H (2004) Multi-objective optimal design of truss structure with immune algorithm. Comput Struct 82(11–12):829–844

    MathSciNet  Google Scholar 

  42. Yaseen ZM, Sulaiman SO, Deo RC, Chau K-W (2019) An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387–408

    Google Scholar 

  43. Fotovatikhah F, Herrera M, Shamshirband S, Chau K, Ardabili SF, Piran MJ (2018) Survey of computational intelligence as basis to big flood management: challenges, research directions and future work. Eng Appl Comput Fluid Mech 12(1):411–437

    Google Scholar 

  44. Moazenzadeh R, Mohammadi B, Shamshirband S, Chau K (2018) Coupling a firefly algorithm with support vector regression to predict evaporation in northern iran. Eng Appl Comput Fluid Mech 12(1):584–597

    Google Scholar 

  45. Ardabili SF, Najafi B, Shamshirband S, Bidgoli BM, Deo RC, Chau K (2018) Computational intelligence approach for modeling hydrogen production: a review. Eng Appl Comput Fluid Mech 12(1):438–458

    Google Scholar 

  46. Kwok-wing C (2017) Use of meta-heuristic techniques in rainfall-runoff modelling

  47. Najafi B, Ardabili SF, Shamshirband S, Chau K, Rabczuk T (2018) Application of anns, anfis and rsm to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Eng Appl Comput Fluid Mech 12(1):611–624

    Google Scholar 

  48. Maini R, Dhiman G (2018) Impacts of artificial intelligence on real-life problems. Int J Adv Res Innov Ideas Educ 4(1):291–295

    Google Scholar 

  49. Gaurav D, Mukesh S, Mohan PH, Adam S, Harsimran K (2020) A novel hybrid hypervolume indicator and reference vector adaptation strategies based evolutionary algorithm for many-objective optimization. Eng Comput 2:1–19

    Google Scholar 

  50. Dehghani M, Montazeri Z, Malik OP, Al-Haddad K, Guerrero JM, Dhiman G (2020) A new methodology called dice game optimizer for capacitor placement in distribution systems. Electr Eng Electromech 1:61–64

    Google Scholar 

  51. Gaurav D, Meenakshi G, Atulya N, Vijay K, Mohammad D (2020) A novel algorithm for global optimization: rat swarm optimizer. J Amb Intell Hum Comput 2:2

    Google Scholar 

  52. Meenakshi G, Gaurav D (2020) A novel content based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput Appl 2:2

    Google Scholar 

  53. You L, Huaxiong L, Bo W, Min Z, Mei J (2020) Multi-objective unit commitment optimization with ultra-low emissions under stochastic and fuzzy uncertainties. Int J Mach Learn Cybern 2:1–15

    Google Scholar 

  54. Arqub OA, Mohammed AL-S, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel hilbert space method. Soft Comput 20(8):3283–3302

    MATH  Google Scholar 

  55. Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206

    MATH  Google Scholar 

  56. Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy fredholm-volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610

    Google Scholar 

  57. Chen M, Hammami O (2015) A System Engineering Conception of Multi-objective Optimization for Multi-physics System, pages 299–306. Springer International Publishing, Cham

  58. Kipouros T, Jaeggi DM, Dawes WN, Parks GT, Savill AM, Clarkson PJ (2008) Biobjective design optimization for axial compressors using tabu search. AIAA J 46(3):701–711

    Google Scholar 

  59. Gaurav D, Vijay K (2019) Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. Harmony search and nature inspired optimization algorithms. Springer, Berlin, pp 857–867

    Google Scholar 

  60. Amandeep K, Gaurav D (2019) A review on search-based tools and techniques to identify bad code smells in object-oriented systems. Harmony search and nature inspired optimization algorithms. Springer, Berlin, pp 909–921

    Google Scholar 

  61. Coello Carlos A, Coello LG, B, Van Veldhuizen David A, (2006) Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Springer, New York

    MATH  Google Scholar 

  62. Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2018) The social engineering optimizer (seo). Eng Appl Artif Intell 72:267–293

    Google Scholar 

  63. Gaurav D, Amandeep K (2020) HKn-RVEA: a novel many-objective evolutionary algorithm for car side impact bar crashworthiness problem. Int J Veh Des 2:2

    Google Scholar 

  64. Gaurav D, Meenakshi G (2020) MoSSE: a novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Comput 2:2

    Google Scholar 

  65. Dhiman G (2020) Coronavirus (COVID-19) Effects on psychological health of Indian poultry farmers. Coronaviruses

  66. Yuvaraj N, Srihari K, Chandragandhi S, Arshath RR, Gaurav D, Amandeep K (2020) Analysis of protein-ligand interactions of SARS-Cov-2 against selective drug using deep neural networks. IEEE Big Data Min Anal 2:2

    Google Scholar 

  67. Mohammad D, Zeinab M, Hadi G, Guerrero Josep M, Gaurav D (2020) Darts game optimizer: a new optimization technique based on darts game. Int J Intell Eng Syst 2:2

    Google Scholar 

  68. Srihari K, Ramesh R, Udayakumar E, Gaurav D (2020) An innovative approach for face recognition using raspberry Pi. Artif Intell Evol 2:2

    Google Scholar 

  69. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  70. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Google Scholar 

  71. Coello CA Coello, Lechuga MS (2002) Mopso: A proposal for multiple objective particle swarm optimization. In Proceedings of the Evolutionary Computation on 2002. CEC ’02. Proceedings of the 2002 Congress - Volume 02, CEC ’02, pages 1051–1056, Washington, DC, USA. IEEE Computer Society

  72. Verma S, Kaur S, Dhiman G, Kaur A (2018) Design of a novel energy efficient routing framework for wireless nanosensor networks. In 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), pages 532–536. IEEE

  73. Gaurav D, Amandeep K (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. Soft computing for problem solving. Springer, Berlin, pp 599–615

    Google Scholar 

  74. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. Trans Evol Comp 1(1):67–82

    Google Scholar 

  75. Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    MathSciNet  MATH  Google Scholar 

  76. Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S, Multiobjective optimization test instances for the cec, (2009) special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report 264:2008

  77. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Google Scholar 

  78. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization, pages 105–145. Springer, London

  79. Özkış A, Babalık A (2017) A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm. Inf Sci 402:124–148

    Google Scholar 

  80. Babalık A, Özkış A, Uymaz SA, Kiran MS (2018) A multi-objective artificial algae algorithm. Appl Soft Comput 68:377–395

    Google Scholar 

  81. Deb K (2012) Advances in evolutionary multi-objective optimization. Springer, Berlin, pp 1–26

    Google Scholar 

  82. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Google Scholar 

  83. Gong M, Jiao L, Haifeng D, Bo L (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225–255

    Google Scholar 

  84. Pradhan PM, Panda G (2012) Solving multiobjective problems using cat swarm optimization. Expert Syst Appl 39(3):2956–2964

    Google Scholar 

  85. Hancer E, Xue B, Zhang M, Karaboga D, Akay B (2015) A multi-objective artificial bee colony approach to feature selection using fuzzy mutual information. In 2015 IEEE Congress on Evolutionary Computation (CEC), pages 2420–2427

  86. Gong D, Sun J, Miao Z (2016) A set-based genetic algorithm for interval many-objective optimization problems. IEEE Trans Evol Comput 22(1):47–60

    Google Scholar 

  87. Xue Yu, Jiang J, Zhao B, Ma T (2018) A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft Comput 22(9):2935–2952

    Google Scholar 

  88. Bin W, Qian C, Ni W, Fan S (2012) Hybrid harmony search and artificial bee colony algorithm for global optimization problems. Comput Math Appl 64(8):2621–2634

    MathSciNet  MATH  Google Scholar 

  89. Cai X, Li Y, Fan Z, Zhang Q (2014) An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans Evol Comput 19(4):508–523

    Google Scholar 

  90. Hoyo J, Elliott A, Sargatal J (1996) Handbook of the birds of the world. Lynx Edicions 3:572–599

    Google Scholar 

  91. Macdonald SM, Mason CF (1973) Predation of migrant birds by gulls. Br Birds 66:361–363

    Google Scholar 

  92. Coello CAC (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front Comput Sci China 3(1):18–30

    Google Scholar 

  93. Edgeworth FY (1881) Mathematical physics: P. Keagan, London, England

  94. Pareto V (1964) Cours d’economie politique: Librairie Droz

  95. Coello CAC (2009) Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Frontiers of Computer Science in China 3(1):18–30

    Google Scholar 

  96. Chegini SN, Bagheri A, Najafi F (2018) Psoscalf: a new hybrid pso based on sine cosine algorithm and levy flight for solving optimization problems. Appl Soft Comput 73:697–726

    Google Scholar 

  97. Knowles JD, Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172

    Google Scholar 

  98. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. Trans Evol Comp 8(3):256–279

    Google Scholar 

  99. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Google Scholar 

  100. Coello CA, Dhaenens C, Jourdan L (2010) Multi-objective combinatorial optimization: problematic and context, pages 1–21. Springer Berlin Heidelberg, Berlin, Heidelberg

  101. Rudolph G, Schütze O, Grimme C, Domínguez-Medina C, Trautmann H (2016) Optimal averaged hausdorff archives for bi-objective problems: theoretical and numerical results. Comput Optim Appl 64(2):589–618

    MathSciNet  MATH  Google Scholar 

  102. Schütze O, Esquivel X, Lara A, Coello CAC (2012) Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Google Scholar 

  103. Schütze O, Laumanns M, Tantar E, Coello CAC, Talbi EG (2010) Computing gap free pareto front approximations with stochastic search algorithms. Evol Comput 18(1):65–96

    Google Scholar 

  104. Miqing L, Jinhua Z (2009) Spread assessment for evolutionary multi-objective optimization. Springer, Berlin, pp 216–230

    Google Scholar 

  105. Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. Trans Evol Comp 7(2):117–132

    Google Scholar 

  106. Roy PC, Islam MM, Murase K, Yao X (2015) Evolutionary path control strategy for solving many-objective optimization problem. IEEE Trans Cybern 45(4):702–715

    Google Scholar 

  107. Richardson A (2010) Nonparametric statistics for non-statisticians: a step-by-step approach by gregory w. corder, dale i. foreman. Int Stat Rev 78(3):451–452

    Google Scholar 

  108. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    MathSciNet  MATH  Google Scholar 

  109. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98(3):1021–1025

    Google Scholar 

  110. Rao RV, Waghmare GG (2017) A new optimization algorithm for solving complex constrained design optimization problems. Eng Optim 49(1):60–83

    Google Scholar 

  111. Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Google Scholar 

  112. Dhiman G, Kaur A (2018) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. In: Advances in intelligent systems and computing. Springer, Berlin

  113. Dhiman G, Kaur A (2018) Spotted hyena optimizer for solving engineering design problems. In International Conference on Machine Learning and Data Science. IEEE, In press

Download references

Acknowledgements

This work is partly supported by VC Research (VCR 0000056) for Prof Chang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The source codes are available at: http://dhimangaurav.com/.

Appendices

Appendix A: Unconstrained multi-objective test problems

See Table 12.

Table 12 Table caption

Appendix B: Unconstrained multi-objective test problems

  • ZDT1:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(x)=x_1\\ \text {Minimize}:&{}\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ where,&{}\\ &{} \quad g(x)=1+\dfrac{9}{N-1}{\sum }_{i=2}^{N}x_i\\ &{}\quad h(f_1(x),g(x))=1-\sqrt{\dfrac{f_1(x)}{g(x)}}\\ &{}\quad 0\le x_i\le 1,\, 1\le i \le 30\ \end{array} \end{aligned}$$
  • ZDT2:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(x)=x_1\\ \text {Minimize}:&{}\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ where,&{}\\ &{}\quad g(x)=1+\dfrac{9}{N-1}{\sum }_{i=2}^{N}x_i\\ &{}\quad h(f_1(x),g(x))=1-\Bigg (\dfrac{f_1(x)}{g(x)}\Bigg )^2\\ &{}\quad 0\le x_i\le 1,\, 1\le i \le 30\\ \end{array} \end{aligned}$$
  • ZDT3:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(x)=x_1\\ \text {Minimize}:&{}\quad f_2(x)=g(x)\times h(f_1(x),g(x))\\ where,&{}\\ &{}\quad g(x)=1+\dfrac{9}{29}{\sum }_{i=2}^{N}x_i\\ &{}\quad h(f_1(x),g(x))=1-\sqrt{\dfrac{f_1(x)}{g(x)}}\\ &{}\quad -\Bigg (\dfrac{f_1(x)}{g(x)}\Bigg )sin(10 \pi f_1(x))\\ &{}\quad 0\le x_i\le 1,\, 1\le i \le 30\\ \end{array} \end{aligned}$$
  • ZDT4:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(x)=x_1\\ \text {Minimize}:&{}\quad f_2(x)=g(x)\times [1-(x_1/g(x))^2]\\ where,&{}\\ &{}\quad g(x)=1+10(n-1)+{\sum }_{i=2}^{n}(x_i^2-10cos(4\pi x_i))\\ &{}\quad 0\le x_1\le 1,\, -5\le x_i \le 5,\, i=1,2,\ldots ,n\ \end{array} \end{aligned}$$
  • ZDT6:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(x)=1-e^{-4x_1}\times sin^6(6\pi x_1)\\ \text {Minimize}:&{}\quad f_2(x)=1-\Big (\dfrac{f_1(x)}{g(x)} \Big )^2\\ where,&{}\\ &{}\quad g(x)=1+9\Bigg [\dfrac{\Big (\sum _{i=2}^{n}x_i \Big )}{(n-1)} \Bigg ]^{0.25}\\ &{}\quad 0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{array} \end{aligned}$$

Appendix C: Unconstrained multi-objective test problems

  • DTLZ1:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=\dfrac{1}{2}x_1(1+g(\vec {x}))\\ \text {Minimize}:&{}\quad f_2(\vec {x})=\dfrac{1}{2}(1-x_1)(1+g(\vec {x}))\\ where,&{}\\ &{}\quad g(\vec {x})=100\Big [\mid \vec {x} \mid +{\sum }_{x_i\epsilon \vec {x}}(x_1-0.5)^2-cos(20\pi (x_i-0.5))\Big ]\\ &{}\quad 0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{array} \end{aligned}$$
  • DTLZ2:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1\dfrac{\pi }{2}\Big )\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1\dfrac{\pi }{2}\Big )\\ where,&{}\\ &{}\quad g(\vec {x})={\sum }_{x_i\epsilon \vec {x}}(x_i-0.5)^2\\ &{}\quad 0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{array} \end{aligned}$$
  • DTLZ3:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1\dfrac{\pi }{2}\Big )\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1\dfrac{\pi }{2}\Big )\\ where,&{}\\ &{}\quad g(\vec {x})=100\Big [\mid \vec {x} \mid + {\sum }_{x_i\epsilon \vec {x}}(x_i-0.5)^2-cos(20\pi (x_i-0.5))\Big ]\\ &{}\quad 0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{array} \end{aligned}$$
  • DTLZ4:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (x_1^\alpha \dfrac{\pi }{2}\Big )\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (x_1^\alpha \dfrac{\pi }{2}\Big )\\ where,&{}\\ &{}\quad g(\vec {x})={\sum }_{x_i\epsilon \vec {x}}(x_i-0.5)^2\\ &{}\quad \alpha =100\\ &{}\quad 0\le x_i\le 1,\, i=1,2,\ldots ,n\\ \end{array} \end{aligned}$$
  • DTLZ5:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ where,&{}\\ &{}\quad g(\vec {x})={\sum }_{x_i\epsilon \vec {x}}(x_i-0.5)^2\\ &{}\quad 0\le x_i\le 1,\, i=2, 3, \ldots , n\\ \end{array} \end{aligned}$$
  • DTLZ6:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=(1+g(\vec {x}))cos\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))sin\Big (\dfrac{1+2g(\vec {x})x_1}{4(1+g(\vec {x}))}\times \dfrac{\pi }{2}\Big )\\ where,&{}\\ &{}\quad g(\vec {x})={\sum }_{x_i\epsilon \vec {x}}x_i^{0.1}\\ &{}\quad 0\le x_i\le 1,\, i=2, 3, \ldots , n\\ \end{array} \end{aligned}$$
  • DTLZ7:

    $$\begin{aligned} \begin{array}{ll} \text {Minimize}:&{}\quad f_1(\vec {x})=x_1\\ \text {Minimize}:&{}\quad f_2(\vec {x})=(1+g(\vec {x}))h(f_1(\vec {x}),g(\vec {x}))\\ where,&{}\\ &{}\quad g(\vec {x})=1+\dfrac{9}{\mid \vec {x} \mid }{\sum }_{x_i\epsilon \vec {x}}x_i\\ &{}\quad h(f_1(\vec {x}),g(\vec {x}))=M-\dfrac{f_1(\vec {x})}{1+g(\vec {x})}(1+sin(3\pi f_1(\vec {x})))\\ &{}\quad 0\le x_i\le 1,\, 1\le i \le n\\ \end{array} \end{aligned}$$

Appendix D: Constrained engineering design problems

1.1 D.1. Welded beam design problem

$$\begin{aligned} \begin{aligned} \begin{aligned}&\text {Minimize}\,\, f_1(\vec {z}) = C = 1.10471h^2l + 0.04811tb(14.0 + l),\\&\text {Minimize}\,\, f_2(\vec {z}) = D = \dfrac{2.1952}{t^3b},\\&\text {Subject to}\\&g_1(\vec {z}) = 13,600 - \tau {(\vec {z})} \ge 0,\\&g_2(\vec {z}) = 30,000 - \sigma {(\vec {z})} \ge 0,\\&g_3(\vec {z}) = b - h \ge 0,\\&g_4(\vec {z}) = P_c(\vec {z}) - 6,000 \ge 0,\\ \end{aligned} \end{aligned}\\ \begin{aligned} \text {Variable range} \\&0.125 \le h, b \le 5.0 \text {in.},\\&0.1 \le l, t \le 10.0 \text {in.},\\ \end{aligned}\\ \begin{aligned} \text {where}\\&\tau {(\vec {z})} = \sqrt{(\tau ^{'})^2 + (\tau ^{''})^2 + (l\tau ^{'}\tau ^{''})/\sqrt{0.25(l^2 + (h + t)^2)}},\\&\tau ^{'} = \dfrac{6,000}{\sqrt{2}hl}, \sigma {(\vec {z})} = \dfrac{504,000}{t^2b},\\&\tau ^{''} = \dfrac{6,000(14 + 0.5l)\sqrt{0.25(l^2 + (h + t)^2)}}{2[0.707hl(l^2/12 + 0.25(h + t)^2)]},\\&P_c(\vec {z}) = 64,746.022(1 - 0.0282346t)tb^3. \end{aligned} \end{aligned}$$

D.2. Multiple-disk clutch brake design problem

$$\begin{aligned} \begin{aligned} \begin{aligned}&\text {Minimize}\,\, f_1(\vec {z}) = M = \pi (r_o^2 - r_i^2)t(Z+1)p_m,\\&\text {Minimize}\,\, f_2(\vec {z}) = T = \dfrac{I_zw}{M_h+M_f},\\&\text {Subject to} \\&g_1(\vec {z}) = r_o - r_i - \Delta R \ge 0,\\&g_2(\vec {z}) = L_{max} - (Z+1)(t+\delta ) \ge 0,\\&g_3(\vec {z}) = p_{max} - p_{rz} \ge 0,\\&g_4(\vec {z}) = p_{max}V_{sr,max} - p_{rz}V_{sr} \ge 0,\\&g_5(\vec {z}) = V_{sr,max} - V_{sr} \ge 0,\\&g_6(\vec {z}) = M_h - sM_s \ge 0,\\&g_7(\vec {z}) = T \ge 0,\\&g_8(\vec {z}) = T_{max} - T \ge 0,\\&60 \le r_i \le 80\text { mm},\\&90 \le r_o \le 110\text { mm},\\&1.5 \le t \le 3\text { mm},\\&0 \le F \le 1000\text { N},\\&2 \le Z\le 9\\ \text {where}\\&p_m = 0.0000078 \text { kg/mm}^3, p_{max} = 1 \text { MPa}, \mu = 0.5, V_{sr,max} = 10 \text { m/s},\\&s = 1.5, T_{max} = 15\text { s}, n = 250 \text { rpm}, M_s = 40 \text { Nm}, M_f = 3 \text { Nm},\\&I_z = 55 \text { kg-m}^2, \delta = 0.5 \text { mm}, \Delta R = 20 \text { mm}, L_{max} = 30 \text { mm},\\&M_h = \dfrac{2}{3}\mu FZ\dfrac{r_o^3 - r_i^3}{r_o^2 - r_i^2} \text { N-mm}, w = \dfrac{\pi n}{30} \text { rad/s}, R_{sr} = \dfrac{2}{3}\dfrac{r_o^3 - r_i^3}{r_o^2 - r_i^2} \text { mm}\\&A = \pi (r_o^2 - r_i^2) \text { mm}^2, p_{rz} = \dfrac{F}{A} \text { N/mm}^2, V_{sr} = \dfrac{\pi R_{sr}n}{30} \text { mm/s}, \end{aligned} \end{aligned} \end{aligned}$$

D.3. Pressure vessel design problem

$$\begin{aligned} \begin{aligned} \begin{aligned}&\text {Minimize}\,\, f_1(\vec {z}) = 0.6224T_sLR + 1.7781T_hR^2 + 3.1661T_s^2L + 19.84T_s^2R,\\&\text {Minimize}\,\, f_2(\vec {z}) = -(\pi R^2L + 1.333\pi R^3),\\&\text {Subject to}\\&g_1(\vec {z}) = 0.0193R - T_s \le 0,\\&g_2(\vec {z}) = 0.00954R - T_h \le 0,\\&g_3(\vec {z}) = 0.0625 - T_s \le 0,\\&g_4(\vec {z}) = T_s - 5 \le 0,\\&g_5(\vec {z}) = 0.0625 - T_h \le 0,\\&g_6(\vec {z}) = T_h - 5 \le 0,\\&g_7(\vec {z}) = 10 - R \le 0,\\&g_8(\vec {z}) = R - 200 \le 0,\\&g_9(\vec {z}) = 10 - L \le 0,\\&g_{10}(\vec {z}) = L - 240 \le 0,\\ \end{aligned} \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, G., Singh, K.K., Slowik, A. et al. EMoSOA: a new evolutionary multi-objective seagull optimization algorithm for global optimization. Int. J. Mach. Learn. & Cyber. 12, 571–596 (2021). https://doi.org/10.1007/s13042-020-01189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01189-1

Keywords