Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithms of matrix recovery based on truncated Schatten p-norm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In recent years, algorithms to recovery low-rank matrix have become one of the research hotspots, and more corresponding optimization models with nuclear norm have also been proposed. However, nuclear norm is not a good approximation to the rank function. This paper proposes a matrix completion model and a low-rank sparse decomposition model based on truncated Schatten p-norm, respectively, which combine Schatten p-norm with truncated nuclear norm, so that the models are more flexible. To solve these models, the function expansion method is first used to transform the non-convex optimization models into the convex optimization ones. Then, the two-step iterative algorithm based on alternating direction multiplier method (ADMM) is employed to solve the models. Further, the convergence of the proposed algorithm is proved mathematically. The superiority of the proposed method is further verified by comparing the existing methods in synthetic data and actual images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hu Y, Zhang D, Ye J, Li X, He X (2013) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 35(9):2117–2130

    Article  Google Scholar 

  2. Fan J, Chow TW (2017) Matrix completion by least-square, low-rank, and sparse self-representations. Pattern Recognit 71:290–305

    Article  Google Scholar 

  3. Yu Y, Peng J, Yue S (2018) A new nonconvex approach to low-rank matrix completion with application to image inpainting. Multidimens Syst Signal Process 1:1–30

    Google Scholar 

  4. Qian W, Cao F (2019) Adaptive algorithms for low-rank and sparse matrix recovery with truncated nuclear norm. Int J Mach Learn Cybern 10(6):1341–1355

    Article  Google Scholar 

  5. Ji H, Liu C, Shen Z, Xu Y (2010) Robust video denoising using low rank matrix completion. In: Proc IEEE Conf Comp Vis Pattern Recognit (CVPR), pp 1791–1798

  6. Nie F, Wang H, Cai X, Huang H, Ding C (2012). Robust matrix completion via joint Schatten \(p\)-norm and \(l_{p}\)-norm minimization. In: Proc Int Comp Data Mining (ICDM), pp 566–574

  7. Lu J, Liang G, Sun J, Bi J (2016) A sparse interactive model for matrix completion with side information. In: Proc Adv Neural Inf Proc Syst (NIPS), pp 4071–4079

  8. Bennett J, Lanning S (2007) The netflix prize. Proc KDD Cup Workshop 2007:35–38

    Google Scholar 

  9. Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Res Med 73(3):1125–1136

    Article  Google Scholar 

  10. Ravishankar S, Moore BE, Nadakuditi RR, Fessler JA (2017) Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging. IEEE Trans Med Imaging 36(5):1116–1128

    Article  Google Scholar 

  11. Javed S, Bouwmans T, Shah M, Jung SK (2017) Moving object detection on RGB-D videos using graph regularized spatiotemporal RPCA. In: Proc Int Conf Image Anal Proc (ICIAP), pp 230–241

  12. Dang C, Radha H (2015) RPCA-KFE: key frame extraction for video using robust principal component analysis. IEEE Trans Image Process 24(11):3742–3753

    Article  MathSciNet  Google Scholar 

  13. Jin M, Li R, Jiang J, Qin B (2017) Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint. Pattern Recognit 63:653–666

    Article  Google Scholar 

  14. Werner R, Wilmsy M, Cheng B, Forkert ND (2016) Beyond cost function masking: RPCA-based non-linear registration in the context of VLSM. In: Proc Int Workshop Pattern Recognit Neuroimaging (PRNI), pp 1–4

  15. Song Z, Cui K, Cheng G (2019) Image set face recognition based on extended low rank recovery and collaborative representation. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-019-00941-6

    Article  Google Scholar 

  16. Fazel M (2002) Matrix rank minimization with applications. Doctoral dissertation, PhD thesis, Stanford University

  17. Candès EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  Google Scholar 

  18. Oymak S, Mohan K, Fazel M, Hassibi B (2011) A simplified approach to recovery conditions for low rank matrices. In: Proc Int Symp Inf Theory (ISIT), pp 2318–2322

  19. Li G, Yan Z (2019) Reconstruction of sparse signals via neurodynamic optimization. Int J Mach Learn Cybern 10(1):15–26

    Article  Google Scholar 

  20. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Comput Adv Multisens Adapt Process 61(6):1–18

    Google Scholar 

  21. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv: 1009.5055

  22. Toh KC, Yun S (2010) An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac J Optim 6(3):615–640

    MathSciNet  MATH  Google Scholar 

  23. Yang AY, Sastry SS, Ganesh A, Ma Y (2010) Fast \(\ell _{1}\)-minimization algorithms and an application in robust face recognition: a review. In: Proc 17th Int Conf Image Process, pp 1849–1852

  24. Gu S, Zhang L, Zuo W, Feng X (2014) Weighted nuclear norm minimization with application to image denoising. In: Proc Conf Comp Vis Pattern Recognit, pp 2862–2869

  25. Feng L, Sun H, Sun Q, Xia G (2016) Image compressive sensing via Truncated Schatten-\(p\) Norm regularization. Signal Proc Image Commun 47:28–41

    Article  Google Scholar 

  26. Chen B, Sun H, Xia G, Feng L, Li B (2018) Human motion recovery utilizing truncated Schatten \(p\)-norm and kinematic constraints. Inf Sci 450:89–108

    Article  MathSciNet  Google Scholar 

  27. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  28. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):1–37

    Article  MathSciNet  Google Scholar 

  29. Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comput Vis 121(2):183–208

    Article  Google Scholar 

  30. Cao F, Chen J, Ye H, Zhao J, Zhou Z (2017) Recovering low-rank and sparse matrix based on the truncated nuclear norm. Neural Netw 85:10–20

    Article  Google Scholar 

  31. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61933013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feilong Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The proof of Theorem 2.1

Let \(Q_{X}=M-N_{k+1}+\frac{1}{\mu _{k}}Y_{k}\), then in \((k+1)\)-th iteration, its singular value decomposition is \([U_{k}, \Delta _{k}, V_{k}]=SVD(Q_{X})\). From Lemma 2.2, it follows that \(X_{k+1}=U_{k}\Lambda _{k}V_{k}^{\top }\), where \(\Lambda _{k}=\{(\Delta _{k}-\frac{1}{\mu _{k}}W)_{+}\}\). So from (2.14) it follows that

$$\begin{aligned} \begin{aligned} \Vert Y_{k+1}\Vert _{F}&= \left\| Y_{k}+\mu _{k}(M-X_{k+1}-N_{k+1})\right\| _{F}\\&=\mu _{k}\left\| \frac{1}{\mu _{k}}Y_{k}+M-X_{k+1}-N_{k+1}\right\| _{F}\\&=\mu _{k}\left\| U_{k}\Delta _{k}V_{k}^{\top }-U_{k}\Lambda _{k}V_{k}^{\top }\right\| _{F}\\&=\mu _{k}\Vert \Delta _{k}-\Lambda _{k}\Vert _{F}\\&\le \mu _{k}\left\| \frac{W}{\mu _{k}}\right\| _{F}=\Vert W\Vert _{F}, \end{aligned} \end{aligned}$$
(5.1)

which shows that \(\{Y_{k}\}\) is bounded. Recalling the definition of augmented Lagrangian function (2.8), for the solution of \((k+1)\)-th iteration \(\{X_{k+1}, N_{k+1}\}\), there is

$$\begin{aligned} \Gamma (X_{k+1}, N_{k+1}, Y_{k}, \mu _{k})\le \Gamma (X_{k}, N_{k}, Y_{k}, \mu _{k}). \end{aligned}$$

Noticing \(Y_{k+1}=Y_{k}+\mu _{k}(M-X_{k+1}-N_{k+1})\), we have

$$\begin{aligned} \begin{aligned}&\Gamma (X_{k}, N_{k}, Y_{k}, \mu _{k}) \\&\quad =\Gamma (X_{k}, N_{k}, Y_{k-1}, \mu _{k-1})+\frac{\mu _{k}-\mu _{k-1}}{2}\Vert M-X_{k}-N_{k}\Vert _{F}^{2}\\&\qquad +\langle Y_{k}-Y_{k-1},M-X_{k}-N_{k}\rangle \\&\quad =\Gamma (X_{k}, N_{k}, Y_{k-1}, \mu _{k-1})+\frac{\mu _{k}-\mu _{k-1}}{2}\left\| \frac{1}{\mu _{k-1}}(Y_{k}-Y_{k-1})\right\| _{F}^{2}\\&\qquad +\langle Y_{k}-Y_{k-1},\frac{1}{\mu _{k-1}}(Y_{k}-Y_{k-1})\rangle \\&\quad =\Gamma (X_{k}, N_{k}, Y_{k-1}, \mu _{k-1})+\frac{\mu _{k}+\mu _{k-1}}{2\mu _{k-1}^{2}}\Vert (Y_{k}-Y_{k-1})\Vert _{F}^{2}. \end{aligned} \end{aligned}$$
(5.2)

Therefore,

$$\begin{aligned} \begin{aligned}&\Gamma (X_{k+1}, N_{k+1}, Y_{k}, \mu _{k} ) \\&\quad \le \Gamma (X_{1}, N_{1}, Y_{0}, \mu _{0}) +\frac{\mu _{k}+\mu _{k-1}}{2\mu _{k-1}^{2}}\Vert (Y_{k}-Y_{k-1})\Vert _{F}^{2}. \end{aligned} \end{aligned}$$
(5.3)

Since \(\{Y_{k}\}\) is bound, and there is \(\mu _{k+1}=\min (\rho \mu _{k}, \mu _{\text {max}})\), \(\Gamma (X_{k+1}, N_{k+1}, Y_{k}, \mu _{k})\) is bounded.

And because

$$\begin{aligned} \begin{aligned} \sum _{i=1}^{\min (m,n)}\omega _{i}\sigma _{i}(X_{k})&=\Vert X_{k}\Vert _{W,*}=\Gamma (X_{k}, N_{k}, Y_{k-1}, \mu _{k-1})\\&\quad +\frac{\mu _{k-1}}{2}\left( \frac{1}{\mu _{k-1}^{2}}\Vert Y_{k-1}\Vert _{F}^{2}-\Vert M-X_{k}-N_{k}+\frac{1}{\mu _{k-1}}\Vert Y_{k-1}\Vert _{F}^{2}\right) \\&=\Gamma (X_{k}, N_{k}, Y_{k-1}, \mu _{k-1})-\frac{1}{2\mu _{k-1}}(\Vert Y_{k}\Vert _{F}^{2}-\Vert Y_{k-1}\Vert _{F}^{2}), \end{aligned} \end{aligned}$$
(5.4)

\(\{X_{k}\}\) is bounded. From \(N_{k+1}=M-X_{k}+\frac{1}{\mu _{k}}Y_{k}\), it can be deduced that \(\{N_{k}\}\) is also bounded. So \(\{X_{k}, N_{k}, Y_{k}\}\) has at least one point of accumulation, and

$$\begin{aligned} \lim _{k \rightarrow +\infty }\Vert M-X_{k+1}-N_{k+1}\Vert _{F}=\lim _{k \rightarrow +\infty }\frac{1}{\mu _{k}}\Vert Y_{k+1}-Y_{k}\Vert _{F}=0. \end{aligned}$$

We prove the convergence of \(X_{k}\) below. Because

$$\begin{aligned} \left\{ \begin{array}{l} X_{k}=U_{k-1}\Lambda _{k-1}V_{k-1}^{\top },\\ X_{k+1}=M-N_{k+1}-\frac{1}{\mu _{k}}(Y_{k+1}-Y_{k}),\\ N_{k}=M-X_{k}-\frac{1}{\mu _{k-1}}(Y_{k}-Y_{k-1}),\\ N_{k+1}=M-X_{k}+\frac{1}{\mu _{k}}Y_{k}.\\ \end{array} \right. \end{aligned}$$
(5.5)

we have

$$\begin{aligned} \begin{aligned}&\lim _{k \rightarrow +\infty }\Vert X_{k+1}-X_{k}\Vert _{F}\\&\quad =\lim _{k \rightarrow +\infty } \left\| M-N_{k+1}-\frac{1}{\mu _{k}}(Y_{k+1}-Y_{k})-X_{k}\right\| _{F}\\&\quad =\lim _{k \rightarrow +\infty }\left\| M-N_{k+1}-\frac{1}{\mu _{k}}(Y_{k+1}-Y_{k})-X_{k} + \left( N_{k}+\frac{1}{\mu _{k-1}}Y_{k-1}\right) - \left( N_{k}+\frac{1}{\mu _{k-1}}Y_{k-1}\right) \right\| _{F}\\&\quad \le \lim _{k \rightarrow +\infty }\left\| M+\frac{1}{\mu _{k-1}}Y_{k-1}-N_{k}-X_{k}\right\| _{F}\\&\qquad + \left\| N_{k}-N_{k+1}+\frac{1}{\mu _{k}}(Y_{k}-Y_{k+1})-\frac{1}{\mu _{k-1}}Y_{k-1})\right\| _{F}\\&\quad \le \lim _{k \rightarrow +\infty }\Vert \Delta _{k-1}-\Lambda _{k-1}\Vert _{F}+\Vert N_{k}-N_{k+1}\Vert _{F}\\&\qquad + \left\| \frac{1}{\mu _{k}}(Y_{k}-Y_{k+1})-\frac{1}{\mu _{k-1}}Y_{k-1})\right\| _{F}\\&\quad =\lim _{k \rightarrow +\infty }\Vert \Delta _{k-1}-\Lambda _{k-1}\Vert _{F}+ \left\| \frac{1}{\mu _{k-1}}(Y_{k-1}-Y_{k}) -\frac{1}{\mu _{k}}Y_{k})\right\| _{F}+ \left\| \frac{1}{\mu _{k}}(Y_{k}-Y_{k+1})-\frac{1}{\mu _{k-1}}Y_{k-1})\right\| _{F}\\&\quad =0. \end{aligned} \end{aligned}$$
(5.6)

This completes the proof of Theorem 2.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Qian, W., Zhang, Q. et al. Algorithms of matrix recovery based on truncated Schatten p-norm. Int. J. Mach. Learn. & Cyber. 12, 1557–1570 (2021). https://doi.org/10.1007/s13042-020-01256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01256-7

Keywords