Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Speed control of electric vehicle by using type-2 fuzzy neural network

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The forces of drag, tire and road surface friction resistance, the drive motor characteristics, the hill climbing angle, and other non-linear dynamic factors affect the performance of electric vehicles (EV) tremendously. The proposed self-construction of type-2 fuzzy neural network (SCT2FNN) controller was based on the robust typical type-2 fuzzy neural network (T2FNN) controller. T2FNN with the self-construct parameter and online learning could estimate the angular velocity of the motor operation to control the EV. Hence, SCT2FNN with the self-construct parameter and online learning could promptly track the speed of EV. SCT2FNN also could estimate the torque control of DC motor. The simulation results showed that SCT2FNN controller was more efficient than PID controller, while the speed was controlled by considering the difference of the climbing slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rigden JS, Stuewer RH (2008) The physical tourist: a science guide for the traveler. Birkhäuser, Basel

    Google Scholar 

  2. Nye DE (1992) Electrifying America: social meanings of a new technology. MIT Press, MA

    Google Scholar 

  3. Flink JJ (1990) The automobile age. MIT Press, MA

    Google Scholar 

  4. Leitman S, Brant B (2008) Build your own electric vehicle. McGraw-Hill, New York City

    Google Scholar 

  5. Wyczalek FA (2001) Hybrid electric vehicles: year 2000 status. IEEE AES Syst Magaz 16:15–25. https://doi.org/10.1109/62.911316

    Article  Google Scholar 

  6. Colli VD, Tomassi G, Scarano M (2006) Single wheel longitudinal traction control for electric vehicles. IEEE Transact Power Electron 21:799–808. https://doi.org/10.1109/TPEL.2006.872363

    Article  Google Scholar 

  7. Wehrey MC (2004) What’s new with hybrid electric vehicles. IEEE Power Energy Magaz 2:34–39. https://doi.org/10.1109/MPAE.2004.1359016

    Article  Google Scholar 

  8. Ray LR (1995) Real-time determination of road coefficient of friction for IVHS and advanced electric vehicle control. in Proc. Conf. of American Control, Seattle, WA, USA, June 21–23, pp. 2133–2137

  9. Hori Y, Toyoda Y, Tsuruoka Y (1997) Traction control of electric vehicle based on the estimation of road surface condition. in Proc. Conf. of Power Conversion, Nagaoka, Japan, August 3–6, pp. 1–8

  10. Hori Y (2004) Future vehicle driven by electricity and control. IEEE Transact Industrial Electron 51:954–962. https://doi.org/10.1109/TIE.2004.834944

    Article  Google Scholar 

  11. Kawamura A, Yokoyama T, Kume T (1994) Anti-directional-twin-rotary motor drive for electric vehicle. in Proc. Conf. of IEEE Industry Applications Society Annual Meeting, Denver, CO, USA, Oct. 2–6, pp. 453–459

  12. Hoshi N, Kawamura A (1996) Experimental discussion on the permanent magnet type Anti-directional-twin-rotary motor drive for electric vehicle. in Proc. Conf. of Advanced Motion Control, Mie, Japan, Mar. 18–21, pp. 425–429

  13. Yoshimoto K, Kawamura A, Nobukazu H (1998) Traction control of Anti-directional-twin-rotary motor drive based on electric vehicle driving simulator. in Proc. Conf. of IEEE Power Electronics Specialists, Fukuoka, Japan, May 17–22, pp. 578–582

  14. Mi C, Lin H, Zhang Y (2005) Iterative learning control of antilock braking of electric and hybrid vehicle. IEEE Transact Vehicular Technol 54:486–494. https://doi.org/10.1109/TVT.2004.841552

    Article  Google Scholar 

  15. Terashima M, Ashikaga T, Mizuno T, Natori K, Fujiwara N, Yada M (1997) Novel motors and controllers for high-performance electric vehicle with four in-wheel motors. IEEE Transact Industrial Electronic 44:28–38. https://doi.org/10.1109/41.557496

    Article  Google Scholar 

  16. Tahami F, Kazemi R, Farhanghi S (2003) A novel driver assist stability system for all-wheel-drive electric vehicles. IEEE Transact Vehicular Technology 52:683–692. https://doi.org/10.1109/TVT.2003.811087

    Article  Google Scholar 

  17. Huang Q, Huang Z, Zhou H (2009) Nonlinear optimal and robust speed control for a light-weighted all-electric vehicle. IET Control Theory Appl 3:437–444. https://doi.org/10.1049/iet-cta.2007.0367

    Article  MathSciNet  Google Scholar 

  18. Mendel JM (1995) Fuzzy logic systems for engineering: A tutorial. Proc IEEE 83:345–377. https://doi.org/10.1109/5.364485

    Article  Google Scholar 

  19. Liang Q, Mendel JM (200) Interval type-2 fuzzy logic systems: theory and design. IEEE Transact Fuzzy Syst 8:535–550. https://doi.org/10.1109/91.873577

  20. Zeng J, Liu ZQ (2006) Type-2 fuzzy hidden Markov models and their application to speech recognition. IEEE Transact Fuzzy Syst 14:454–467. https://doi.org/10.1109/TFUZZ.2006.876366

    Article  Google Scholar 

  21. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: Interval type-2 fuzzy approach to C-means. IEEE Transact Fuzzy Syst 15:107–120. https://doi.org/10.1109/TFUZZ.2006.889763

    Article  Google Scholar 

  22. Wang J, Kumbasar T (2019) Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods. IEEE/CAA J Automatica Sinica 6:247–257. https://doi.org/10.1109/JAS.2019.1911348

    Article  Google Scholar 

  23. Shen T, Wang J (2020) Hierarchical fused model with deep learning and Type-2 fuzzy learning for breast cancer diagnosis. IEEE Transactions on Fuzzy Systems 28:3204–3218. https://https://doi.org/10.1109/TFUZZ.2020.3013681

  24. Wang J, Luo W (2021) Adaptive Type-2 FNN-Based dynamic sliding mode control of DC–DC boost converters. IEEE Transact Syst Man Cybernet Syst 51:2246–2257. https://doi.org/10.1109/TSMC.2019.2911721

    Article  Google Scholar 

  25. Chao F, Zhou D (2020) Type-2 fuzzy hybrid controller network for robotic systems. IEEE Transact Cybernet 50:3778–3792. https://doi.org/10.1109/TCYB.2019.2919128

    Article  Google Scholar 

  26. Kebria PM, Khosravi A (2020) Adaptive Type-2 fuzzy neural-network control for teleoperation systems with delay and uncertainties. IEEE Transact Fuzzy Syst 28:2543–2554. https://doi.org/10.1109/TFUZZ.2019.2941173

    Article  Google Scholar 

  27. Mendel JM (1994) A prelude to neural networks: adaptive and learning systems. Prentice-Hall, NJ

    MATH  Google Scholar 

  28. Omidvar O, Elliott DL (1997) Neural systems for control. Academic, New York

    Google Scholar 

  29. Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Transact Neural Networks 1:4–27. https://doi.org/10.1109/72.80202

    Article  Google Scholar 

  30. Lin CM, Hsu CF (2002) Neural-network-based adaptive control for induction servomotor drive system. IEEE Transact Industrial Electron 49:115–123. https://doi.org/10.1109/41.982255

    Article  Google Scholar 

  31. Lin CM, Hsu CF (2003) Neural-network hybrid control for antilock braking systems. IEEE Transact Neural Networks 14:351–359. https://doi.org/10.1109/TNN.2002.806950

    Article  Google Scholar 

  32. Ku CC, Lee KY (1995) Diagonal recurrent neural networks for dynamic systems control. IEEE Transact Neural Networks 6:144–156. https://doi.org/10.1109/72.363441

    Article  Google Scholar 

  33. Lin CM, Hsu CF (2004) Supervisory recurrent fuzzy neural network control of wing rock for slender delta wing. IEEE Transact Fuzzy Syst 12:733–742. https://doi.org/10.1109/TFUZZ.2004.834803

    Article  Google Scholar 

  34. Lin CT, Lee CSG (1996) Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice-Hall, NJ

    Google Scholar 

  35. Jang R, Sun CT, Mizutani E (1997) Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, NJ

    Google Scholar 

  36. Nauck D, Klawonn F, Kruse R, Foundations of Neuro-Fuzzy Systems. Wiley, New York.

  37. Lee CC (1990) Fuzzy logic in control systems: Fuzzy logic controller-Part I and part II. IEEE Transact System Man Cybernet 20:404–436. https://doi.org/10.1109/21.52551

    Article  MATH  Google Scholar 

  38. Yager RR (1994) Filev DP (1994) Essentials of fuzzy modeling and control. Wiley, New York

    Google Scholar 

  39. Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, NJ

    Google Scholar 

  40. Park JH, Huh SH, Kim SH, Seo SJ, Park GT (2005) Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Transact Neural Network 16:414–422. https://doi.org/10.1109/TNN.2004.841786

    Article  Google Scholar 

  41. Er MJ, Tan TP, Loh SH (2004) Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocess Microsyst 28:491–498. https://doi.org/10.1016/j.micpro.2004.04.002

    Article  Google Scholar 

  42. Wu S, Er MJ (2000) Dynamic fuzzy neural networks-A novel approach to function approximation. IEEE Transact Syst Man Cybernet Part B Cybernet 30:358–364. https://doi.org/10.1109/3477.836384

    Article  Google Scholar 

  43. Eyoh I, John R (2018) Hybrid learning for interval Type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Transact Fuzzy Syst 26:2672–2685. https://doi.org/10.1109/TFUZZ.2018.2803751

    Article  Google Scholar 

  44. Hagras H (2006) Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Transact Syst Man Cybernet Part B Cybernet 36:1206–1209. https://doi.org/10.1109/tcsi.2006.873184

    Article  Google Scholar 

  45. Mendel JM (2004) Computing derivatives in interval type-2 fuzzy logic systems. IEEE Transact Fuzzy Syst 12:84–98. https://doi.org/10.1109/TFUZZ.2003.822681

    Article  Google Scholar 

  46. Mendez GM, Castillo O (2005) Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm. in Proc. Conf. of Fuzzy System, Reno, NV, USA, May 25, pp. 230–235.

  47. Juang CF, Tsao YW (2008) A type-2 self-organizing neural fuzzy system and its FPGA implementation. IEEE Transact Syst Man Cybernet Part B Cybernet 38:1537–1548. https://doi.org/10.1109/TSMCB.2008.927713

    Article  Google Scholar 

  48. Lin FJ, Chou PH (2009) Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Transact Industrial Electron 56:178–193. https://doi.org/10.1109/TIE.2008.927225

    Article  Google Scholar 

  49. Horikawa SI, Furuhashi T, Uchikawa Y (1992) On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Transact Neural Networks 3:801–806. https://doi.org/10.1109/72.159069

    Article  Google Scholar 

  50. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Transact Fuzzy Syst 8:535–550. https://doi.org/10.1109/91.873577

    Article  Google Scholar 

  51. Er MJ, Tan TP, Loh SY (2004) Control of a mobile robot using generalized dynamic fuzzy neural networks. Microprocess Microsyst 28:491–498. https://doi.org/10.1016/j.micpro.2004.04.002

    Article  Google Scholar 

  52. Juang CF, Tsao YW (2008) A type-2 self-organizing neural fuzzy system and its FPGA implementation. IEEE Transact Syst Man Cybernet Part B Cybernet 38:1537–1548. https://doi.org/10.1109/TSMCB.2008.927713

    Article  Google Scholar 

  53. Hsu CF (2007) Self-organizing adaptive fuzzy neural control for a class of non-linear systems. IEEE Transact Neural Networks 18:1232–1241. https://doi.org/10.1109/TNN.2007.899178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, MH., Wu, YC. Speed control of electric vehicle by using type-2 fuzzy neural network. Int. J. Mach. Learn. & Cyber. 13, 1647–1660 (2022). https://doi.org/10.1007/s13042-021-01475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01475-6

Keywords