Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Online sequential fuzzy dropout extreme learning machine compensate for sliding-mode control system errors of uncertain robot manipulator

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

An online sequential fuzzy dropout scheme is proposed to track the position of robot manipulators in this paper. The scheme is based on the extreme learning machine–inherited sliding-mode control (OSFDELMISMC). In this scheme, an improved extreme learning machine, called the online sequential fuzzy dropout extreme learning machine (OSFDELM), is utilized to mimic the control law of sliding-mode, update the network parameters through online cyclic training, and relax the detailed system information using the fuzzy method. To ensure network convergence and stable control performance, this paper obtains the network adaptive learning law through the Lyapunov stability theorem. The simulation results indicate that the OSFDELMISMC scheme is a feasible control scheme under which the trajectories of the two-link robot manipulator are accurately tracked, and chattering is effectively reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhou Z, Zhang R, Zhu Z (2019) Robust Kalman filtering with LSTM for image-based visual servo control. Multimed Tools Appl 78(18):26341–26371

    Article  Google Scholar 

  2. Zhou Z, Wang C, Zhu Z, Wang Y, Yang D (2019) Sliding mode control based on a hybrid grey-wolf-optimized extreme learning machine for robot manipulators. Optik 185:364–380

    Article  Google Scholar 

  3. Desrochers A (1985) Introduction to robot dynamics and control. IEEE Control Syst Mag 5(1):32–34

    Article  Google Scholar 

  4. von Raumer T, Dion JM, Dugard L, Thomas JL (1994) Applied nonlinear control of an induction motor using digital signal processing. IEEE Trans Control Syst Technol 2(4):327–335

    Article  Google Scholar 

  5. Chien MC, Huang AC (2007) Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans Ind Electron 54(2):1032–1038

    Article  Google Scholar 

  6. Rahman MH, Saad M, Kenné JP, Archambault PS (2013) Control of an exoskeleton robot arm with sliding mode exponential reaching law. Int J Control Autom Syst 11(1):92–104

    Article  Google Scholar 

  7. Hwang JP, Kim E (2006) Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans Fuzzy Syst 14(2):232–247

    Article  Google Scholar 

  8. Li X, Cheah CC (2014) Adaptive neural network control of robot based on a unified objective bound. IEEE Trans Control Syst Technol 22(3):1032–1043

    Article  Google Scholar 

  9. Lee JK, Choi YH, Jin BP (2015) Sliding mode tracking control of mobile robots with approach angle in cartesian coordinates. Int J Control Autom Syst 13(3):718–724

    Article  Google Scholar 

  10. FallahaC, Saad M, Kanaan H (2007) Sliding mode control with exponential reaching law applied on a 3 DOF modular robot arm. In: European control conference (ECC). IEEE, pp 4925–4931

  11. Soltanpour MR, Otadolajam P, Khooban MH (2015) Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci Meas Technol 9(3):322–334

    Article  Google Scholar 

  12. Yang J, Li S, Yu X (2013) Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron 60(1):160–169

    Article  Google Scholar 

  13. Zhang J, Liu X, Xia Y, Zuo Z, Wang Y (2016) Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans Ind Electron 63(11):7040–7048

    Article  Google Scholar 

  14. Huang J, Zhang M, Ri S, Xiong C, Li Z, Kang Y (2020) High-order disturbance-observer-based sliding mode control for mobile wheeled inverted pendulum systems. IEEE Trans Ind Electron 67(3):2030–2041

    Article  Google Scholar 

  15. Selvaraj P, Sakthivel R, Kwon OM, Muslim M (2017) Disturbance rejection of interval type-2 fuzzy systems based on equivalence-input-disturbance approach. J Dyn Syst Meas Control Trans ASME 139(10):101006

    Article  Google Scholar 

  16. Sakthivel R, Sakthivel R, Nithya V, Selvaraj P, Kwon OM (2018) Fuzzy sliding mode control design of Markovian jump systems with time-varying delay. J Franklin Inst 355(14):6353–6370

    Article  MathSciNet  MATH  Google Scholar 

  17. Selvaraj P, Kaviarasan B, Sakthivel R, Karimi HR (2017) Fault-tolerant SMC for Takagi-Sugeno fuzzy systems with time-varying delay and actuator saturation. IET Control Theory Appl 11(8):1112–1123

    Article  MathSciNet  Google Scholar 

  18. Song S, Park JH, Zhang B, Song X (2020) Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation. Appl Math Comput 364:124662

    MathSciNet  MATH  Google Scholar 

  19. Song S, Zhang B, Song X, Zhang Y, Zhang Z, Li W (2019) Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems. J Franklin Inst 356(10):5027–5048

    Article  MathSciNet  MATH  Google Scholar 

  20. Song S, Zhang B, Song X, Zhang Z (2019) Neuro-fuzzy-based adaptive dynamic surface control for fractional-order nonlinear strict-feedback systems with input constraint. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2933359

    Article  Google Scholar 

  21. Gao J, An X, Proctor A, Bradley C (2017) Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Eng 142:666–675

    Article  Google Scholar 

  22. Zhao G, Li H, Song Z (2013) Adaptive dynamic fuzzy neural network-based decoupled sliding-mode controller with hybrid sliding surfaces. Int J Autom Control 7(3):183–201

    Article  Google Scholar 

  23. Baek J, Jin M, Han S (2016) A new adaptive sliding-mode control scheme for application to robot manipulators. IEEE Trans Ind Electron 63(6):3628–3637

    Article  Google Scholar 

  24. Wai RJ, Chen PC (2006) Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans Ind Electron 53(4):1328–1349

    Article  Google Scholar 

  25. Yen VT, Nan WY, Van Cuong P, Quynh NX, Thich VH (2017) Robust adaptive sliding mode control for industrial robot manipulator using fuzzy wavelet neural networks. Int J Control Autom Syst 15(6):2930–2941

    Article  Google Scholar 

  26. Wai RJ, Muthusamy R (2013) Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans Neural Netw Learn Syst 24(2):274–284

    Article  Google Scholar 

  27. Zhou M, Feng Y, Xue C et al (2020) Deep convolutional neural network based fractional-order terminal sliding-mode control for robotic manipulators. Neurocomputing 416:143–151

    Article  Google Scholar 

  28. Zhang Y, Dong Z, Wang S et al (2020) Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Inf Fusion 64:149–187

    Article  Google Scholar 

  29. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529

    Article  Google Scholar 

  30. Fu A, Dong C, Wang L (2014) An experimental study on stability and generalization of extreme learning machines. Int J Mach Learn Cybern 6(1):129–135

    Article  Google Scholar 

  31. Zhang YD, Zhao GH, Sun JD et al (2018) Smart pathological brain detection by synthetic minority oversampling technique, extreme learning machine, and Jaya algorithm. Multimed Tools Appl 77(17):22629–22648

    Article  Google Scholar 

  32. Rong HJ, Huang GB, Sundararajan N, Saratchandran P (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern B Cybern 39(4):1067–1072

    Article  Google Scholar 

  33. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  34. Li D, Yu H, Tee KP et al (2021) Time-synchronized stability and control. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2021.3050183

    Article  Google Scholar 

  35. Li D, Tee KP, Xie L et al (2021) Time-synchronized control for disturbed systems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3054589

    Article  Google Scholar 

  36. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  37. Wai RJ, Yang ZW (2008) Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. IEEE Trans Syst Man Cybern Part B Cybern 38(5):1326–1346

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Key R&D Program of Zhejiang Province (No. 2021C03013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Zhou.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Ji, H. & Zhu, Z. Online sequential fuzzy dropout extreme learning machine compensate for sliding-mode control system errors of uncertain robot manipulator. Int. J. Mach. Learn. & Cyber. 13, 2171–2187 (2022). https://doi.org/10.1007/s13042-022-01513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01513-x

Keywords