Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The Relative Impact of Human Disturbances on the Vegetation of a Large Wetland Complex

  • Original Paper
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Anthropogenic disturbances are important factors structuring the vegetation of ecosystems, but their influence on peatlands remain poorly understood. We quantified the relative influence of anthropogenic disturbances, abiotic variables and spatial patterns on the floristic composition of a large wetland complex, and assessed the relationship between disturbances and species richness. Vegetation and abiotic data were collected in 253 plots, and disturbances determined using aerial photographs. Data were analyzed with multivariate and nonparametric techniques. Disturbances had detrimental effects on bryophyte and on true peatland species richness, but favored the richness of grass as well as non-peatland and exotic species. However, abiotic conditions are still predominant in controlling the overall plant composition at the complex level (25.2% of floristic variations explained, compared to 8.2% for disturbances). The vegetation heterogeneity was also mainly attributed to abiotic factors when taking account only fen habitats. The three sets of explanatory factors were equally important in structuring the vegetation of bog habitats. However, the most influential variables were those related to human activities. Our landscape ecology approach to study wetland vegetation allowed us to show that while human disturbances are important in structuring vegetation in bogs and fens, they do not override the prevalence of local abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DS, Davis RB (1997) The vegetation and its environments in Maine peatlands. Canadian Journal of Botany 75:1785–1805. doi:10.1139/b97-893

    Article  Google Scholar 

  • Anderson HM, Gale MR, Jurgensen MF, Trettin CC (2007) Vascular and non-vascular plant community response to silvicultural practices and resultant microtopography creation in a forested wetland. Wetlands 27:68–79. doi:10.1672/0277-5212

    Article  Google Scholar 

  • Barber KE (1993) Peatlands as scientific archives of past biodiversity. Biodiversity and Conservation 2:474–489. doi:10.1007/BF00056743

    Article  Google Scholar 

  • Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics 1:37–53. doi:10.1007/BF00714196

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Bouchard A, Hay S (1976) The vascular flora of the Gros Morne National Park Coastal Plain, in Newfoundland. Rhodora 78:207–260

    Google Scholar 

  • Chapman S, Buttler A, Francez AJ, Laggoun-Défarge F, Vasander H, Schloter M, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell E (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and the Environment 1:525–532. doi:10.1890/1540-9295(2003)001[0525:EONPAB]2.0.CO;2

    Article  Google Scholar 

  • Charman DJ (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 229–289

    Google Scholar 

  • Cooper A, McCann T, Power J (1997) Regional variation in the cover, species composition and management of blanket bog. Landscape and Urban Planning 37:19–28. doi:10.1016/S0169-2046(96)00366-0

    Article  Google Scholar 

  • Crow GE, Hellquist CB (2000a) Aquatic and wetland plants of northeastern North America. A revised and enlarged edition of Norman C. Fassett’s. A manual of aquatic plants. Volume I: Pteridophytes, gymnosperms and angiosperms: Dicotyledons. The University of Wisconsin Press, Madison

    Google Scholar 

  • Crow GE, Hellquist CB (2000b) Aquatic and wetland plants of northeastern North America. A revised and enlarged edition of Norman C, Fassett’s. A manual of aquatic plants. Volume II—Angiosperms: Monocotyledons. The University of Wisconsin Press, Madison

    Google Scholar 

  • de Blois S, Domon G, Bouchard A (2001) Environmental, historical and contextual determinants of vegetation cover: a landscape perspective. Landscape Ecology 16:421–436. doi:10.1023/A:1017548003345

    Article  Google Scholar 

  • de Blois S, Domon G, Bouchard A (2002) Landscape issues in plant ecology. Ecography 25:244–256. doi:10.1034/j.1600-0587.2002.250212.x

    Article  Google Scholar 

  • Desrochers A, Lavoie C, Pellerin S, Poulin M (2000) Bog conservation: a Canadian persperctive. In: Rochefort L, Daigle JY (eds) Sustaining our peatlands, Procedings of the 11th International Peat congress. Canadian Society of Peat and Peatlands & International Peat Society, Edmonton, pp 1034–1137

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345–366. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

    Google Scholar 

  • Faubert J (2007) Catalogue des bryophytes du Québec et du Labrador. Provancheria 30:1–138

    Google Scholar 

  • Frankl R, Schmeidl H (2000) Vegetation change in a south German raised bog: ecosystem engineering by plant species, vegetation switch or ecosystem level feedback mechanisms? Flora 195:267–276

    Google Scholar 

  • Garneau M (2001) Statut trophique des taxons préférentiels et des taxons fréquents mais non préférentiels des tourbières naturelles du Québec-Labrador. In: Payette S, Rochefort L (eds) Écologie des tourbières du Québec-Labrador. Les Presses de l’Université Laval, Québec, pp 523–531

    Google Scholar 

  • Gauthier R (1980) La végétation des tourbières et les sphaignes du parc des Laurentides, Québec. Les Presses de l’Université Laval, Québec

    Google Scholar 

  • Girard M, Lavoie C, Theriault M (2002) The regeneration of a highly disturbed ecosystem: a mined peatland in southern Québec. Ecosystems 5:274–288. doi:10.1007/s10021-001-0071-7

    Article  Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. Journal of Ecology 78:1021–1048

    Article  Google Scholar 

  • Gorham E (1990) Biotic impoverishment in northern peatlands. In: Woodwell GM (ed) The earth in transition, Patterns and processes of biotic impoverishment. Cambridge University Press, Cambridge, pp 65–98

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195. doi:10.2307/1941811

    Article  Google Scholar 

  • Hájek M, Tichy L, Schamp BS, Zeleny D, Roleček J, Hájková P, Apostolova P, Ditě D (2007) Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialist and habitat history. Oikos 116:1311–1322. doi:10.1111/j.0030-1299.2007.15637.x

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:65–70

    Google Scholar 

  • Houlahan JE, Keddy PA, Makkay K, Findlay CS (2006) The effects of adjacent land use on wetland species richness and community composition. Wetlands 26:79–96. doi:10.1672/0277-5212(2006)26[79:TEOALU]2.0.CO;2

    Article  Google Scholar 

  • Jeglum JK, He F (1995) Pattern and vegetation-environment relationships in a boreal forested wetland in northeastern Ontario. Canadian Journal of Botany 73:629–637. doi:10.1139/b95-067

    Article  Google Scholar 

  • King RS, Richardson CJ, Urban DL, Romanowicz EA (2004) Spatial dependency of vegetation-environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystem 7:75–97. doi:10.1007/s10021-003-0210-4

    Article  CAS  Google Scholar 

  • Lachance D, Lavoie C (2004) Vegetation of Sphagnum bogs in highly disturbed landscapes: relative influence of abiotic and anthropogenic factors. Applied Vegetation Science 7:183–192. doi:10.1111/j.1654-109X.2004.tb00609.x

    Google Scholar 

  • Laine J, Vasander H, Sallantaus T (1995) Ecological effects of peatland drainage for forestry. Environmental Reviews 3:286–303. doi:10.1139/a95-015

    CAS  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, Second English edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 103:537–547. doi:10.1034/j.1600-0706.2003.12707.x

    Article  CAS  Google Scholar 

  • Linderholm HW, Leine M (2004) An assessment of the twentieth century tree-cover changes on a southern Swedish peatland combining dendrochronology and aerial photograph analysis. Wetlands 24:357–363. doi:10.1672/0277-5212(2004)024[0357:AAOTCT]2.0.CO;2

    Article  Google Scholar 

  • Locky DA, Bayley SE (2007) Effects of logging in the southern boreal peatlands of Manitoba, Canada. Canadian Journal of Forest Research 37:649–661. doi:10.1139/X06-249

    Article  Google Scholar 

  • Locky DA, Bayley SE, Vitt DH (2005) The vegetational ecology of black spruce swamps, fens, and bogs in southern boreal Manitoba, Canada. Wetlands 25:564–582. doi:10.1672/0277-5212(2005)025[0564:TVEOBS]2.0.CO;2

    Article  Google Scholar 

  • Malmer N (1986) Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64:375–383. doi:10.1139/b86-054

    Article  Google Scholar 

  • Malmer N, Svensson BM, Wallen B (1994) Interaction between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobotanica et Phytotaxonomica 29:483–496. doi:10.1007/BF02883146

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water—synthesis. World Resources Institute, Washington

    Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environmental Conservation 29:3–20. doi:10.1017/S0376892902000024

    Article  CAS  Google Scholar 

  • Økland RH, Økland T, Rydgren K (2001) A Scandinavian perspective on ecological gradients in north-west European mires: a reply to Wheeler and Proctor. Journal of Ecology 89:481–486. doi:10.1046/j.1365-2745.2001.00573.x

    Article  Google Scholar 

  • Pellerin S, Lavoie C (2000) Peatland fragments of southern Québec: recent evolution of their vegetation structure. Canadian Journal of Botany 78:255–265. doi:10.1139/cjb-78-2-255

    Article  Google Scholar 

  • Pellerin S, Mercure M, Desaulniers AS, Lavoie C (2009) Changes in plant communities over three decades on two disturbed bogs in southeastern Québec. Applied Vegetation Science 12:107–118. doi:10.1111/j.1654-109X.2009.01008.x

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. doi:10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Poulin M, Rochefort L, Desrochers A (1999) Conservation of bog plant species assemblages: assessing the role of natural remnants in mined sites. Applied Vegetation Science 2:169–180. doi:10.2307/1478980

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rosa E, Larocque M (2008) Investigating peat hydrological properties using field and laboratory methods: application to the Lanoraie peatland complex (southern Québec, Canada). Hydrological Processes 22:1866–1875. doi:10.1002/hyp.6771

    Article  Google Scholar 

  • Rosa E, Larocque M, Pellerin S, Gagné S, Fournier B (2009) Determining the number of manual measurements required to improve peat thickness estimations by ground penetrating radar. Earth Surface Processes and Landforms 34:377–383. doi:10.1002/esp.1741

    Article  Google Scholar 

  • Roy V, Ruel JC, Plamondon AP (2000) Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands. Forest Ecology and Management 129:253–267. doi:10.1016/S0378-1127(99)00170-X

    Article  Google Scholar 

  • Sjörs H (1950) On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–258

    Article  Google Scholar 

  • Southall EJ, Dale MP, Kent M (2003) Spatial and temporal analysis of vegetation mosaics for conservation: poor fen communities in a Cornish valley mire. Journal of Biogeography 30:1427–1443. doi:10.1046/j.1365-2699.2003.00924.x

    Article  Google Scholar 

  • Tardy G, Pellerin S (2006) Complexe tourbeux du delta de Lanoraie—Délimitation révisée et état de situation. Institut de recherche en biologie végétale, Montréal

    Google Scholar 

  • USDA and NRCS (2008) The PLANTS Database. Available via DIALOG. http://plants.usda.gov. Accessed 31 Aug 2008

  • Vermaat JE, Goosen H, Omtzigt N (2007) Do biodiversity patterns in Dutch wetland complexes relate to variation in urbanisation, intensity of agricultural land use or fragmentation? Biodiversity and Conservation 16:3585–3595. doi:10.1007/s10531-006-9128-4

    Article  Google Scholar 

  • Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical, and topographic gradients. Botanical Journal of the Linnean Society 104:35–59. doi:10.1111/j.1095-8339.1990.tb02210.x

    Article  Google Scholar 

  • Vitt DH, Chee WL (1990) The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106. doi:10.1007/BF00032163

    Article  Google Scholar 

  • Vitt DH, Marsh JE, Bovey RB (1988) Mosses, lichens & ferns of northwest North America. Lone Pine Publishing, Edmonton

    Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ (2007) Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10:1069–1083. doi:10.1007/s10021-007-9080-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project received financial support from the Natural Sciences and Engineering Research Council of Canada, the Friends of the Montréal Botanical Garden and the Ministère du Développement durable, de l’Environnement et des Parcs (the Québec department of sustainable development, environment and parks). We thank M. Jean, A. Keough, and V. Laroche for field assistance, S. Daigle and P. Legendre from Université de Montréal for comments on statistical analyses, and J. Faubert, R. Gauthier and S. Hay for help with plant identification. Earlier versions of this manuscript benefited greatly from comments by four anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Pellerin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Supplementary Material 1

Appendix 1 (PDF 101 KB)

ESM Supplementary Material 2

Appendix 2 (PDF 69.6 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tousignant, MÊ., Pellerin, S. & Brisson, J. The Relative Impact of Human Disturbances on the Vegetation of a Large Wetland Complex. Wetlands 30, 333–344 (2010). https://doi.org/10.1007/s13157-010-0019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-010-0019-9

Keywords