Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the computation of parametric Gröbner bases for modules and syzygies

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents algorithms to compute parametric Gröbner bases for modules and parametric syzygies. The theory of Gröbner basis is by far the most important tool for computations in commutative algebra and algebraic geometry. The theory of parametric Gröbner basis is also important to solve problems of ideals generated by parametric polynomials and submodule generated by parametric vectors. Several algorithms are known for computing parametric Gröbner bases in polynomial rings. However, nobody has studied the extension of parametric Gröbner bases to modules yet. In this paper we extend the theory of parametric Gröbner bases to modules, and we describe an algorithm for computing syzygies of parametric polynomials (vectors). These algorithms have been implemented in the computer algebra system Risa/Asir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker T.: On Gröbner bases under specialization. Appl. Algebra Eng. Commun. Comput. 5, 1–8 (1994)

    Article  MATH  Google Scholar 

  2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Universität Innsbruck, Austria (1965)

  3. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory. In: Bose, N. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel, Dordrecht (1985)

    Google Scholar 

  4. Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1997)

    Google Scholar 

  6. Dolzmann A., Sturm T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  7. Furukawa, A., Sasaki, T., Kobayashi, H.: Gröbner basis of a module over K[x 1, . . . , x n ] and polynomial solutions of a system of linear equations. In: SYMSAC, pp. 222–224. ACM Press, New York (1986)

  8. Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J.H. (ed.) EUROCAL’87, pp. 293–297. ACM Press, New York (1987)

  9. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, New York (2002)

    MATH  Google Scholar 

  10. Kalkbrener, M.: Solving systems of algebraic equations by using Gröbner bases. In: Davenport, J. (ed.), EUROCAL 87, pp. 282–292. Springer, New York (1987)

  11. Kalkbrener M.: On the stability of Gröbner bases under specializations. J. Symb. Comput. 24, 51–58 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Manubens M., Montes A.: Improving DISPGB algorithm using the discriminant ideal. J. Symb. Comput. 41, 1245–1263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Möller M., Mora F.: New constructive methods in classical ideal theory. J. Algebra 100, 138–178 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Montes A.: A new algorithm for discussing Gröbner basis with parameters. J. Symb. Comput. 33(1–2), 183–208 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nabeshima, K.: Reduced Gröbner bases in polynomial rings over a polynomial ring. Math. Comput. Sci. 2, 587–599 (2009)

    Google Scholar 

  16. Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Brown, C. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 299–306. ACM Press, New York (2007)

  17. Pan, W., Wang, D.: Uniform Grp̈bner bases for ideals generated by polynomials with parametric exponents. In: Dumas, J-G. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 269–276. ACM Press, New York (2006)

  18. Sato, Y.: Stability of Gröbner basis and ACGB. In: Dlozmann, A., Seidl, A., Sturm, T. (eds.) The A3L 2005, Conference in Honor of the 60th Birthday of Volker Weispfenning, pp. 223–228. BOD Norderstedt (2005)

  19. Sato, Y., Suzuki, A.: Discrete comprehensive Gröbner bases. In: Mourrain, B. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 292–296. ACM Press, New York (2001)

  20. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. In: Mora, T. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 255–261. ACM Press, New York (2002)

  21. Suzuki A., Sato Y.: An alternative approach to Comprehensive Gröbner bases. J. Symb. Comput. 36(3–4), 649–667 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Suzuki, A., Sato, Y.: Comprehensive Gröbner Bases via ACGB. In: Tran, Q.-N. (ed.) The 10th Internatinal Conference on Applications of Computer Algebra, pp. 65–73. Lamar University (2004)

  23. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: International Symposium on Symbolic and Algebraic Computation, pp. 326–331. ACM Press, New York (2006)

  24. Suzuki, A.: Computation of full comprehensive Gröbner bases. In: Ganzha, V.F., Mayr, E.W., Vorozhtsov, E.V. (eds.) International Workshop on Computer Algebra in Scientic Computing (CASC), LNCS, vol. 3718, pp. 431–444. Springer, New York (2005)

  25. Weispfenning V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Weispfenning, V.: Gröbner bases for binomials with parametric exponents. In: Ganzha, V.F., Mayr, E.W., Vorozhtsov, E.V. (eds.) International Workshop on Computer Algebra in Scientic Computing (CASC), pp. 467–478. Technische Universität München (2004)

  27. Winkler, F.: Solution of equations I: polynomial ideals and Gröbner bases. In: Jenks, R.D., Chudnovsky, D., Dekker, M. (eds.) Computers Mathematics, Lecture Notes in Pure and Applied Mathematics, vol. 125, pp. 383–407 (1986)

  28. Yokoyama, K.: On systems of algebraic equations with parametric exponents. In: Gutierrez, J. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 312–317. ACM Press, New York (2004)

  29. Yokoyama, K.: Stability of parametric decomposition. In: Iglesias, A., Takayama, N. (eds.) International Congress on Mathematical Software, LNCS, vol. 4151, pp. 391–402. Springer, Berlin (2006)

  30. Yokoyama, K.: On systems of algebraic equations with parametric exponents II. In: Applicable Algebra in Engineering Communication and Computing, pp. 603–630 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

About this article

Cite this article

Nabeshima, K. On the computation of parametric Gröbner bases for modules and syzygies. Japan J. Indust. Appl. Math. 27, 217–238 (2010). https://doi.org/10.1007/s13160-010-0003-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-010-0003-z

Keywords