Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizae fungi (AMF) are a big player of the ecosystem which shows a major concern over plant nutrition by providing access to the soil-derived nutrients. Naturally, an intimate association between plant roots and AMF is observed. AMF are involved in improvement on the soil water regime and nutrient uptake both in the biotic and abiotic stress situations such as drought, temperature extreme, heavy metals, salinity, pathogen and metal pollution. This kind of symbiotic relationship between plant roots and fungal hyphae is observed to be 80% of the terrestrial plant species worldwide. In plant AMF association fungal hyphae are benefitted by obtaining sugar from the host plants root and host plants root are ameliorated by improved uptake of water and nutrients from soil surface. AMF have a dual role to manage the Zn nutrition in soil. For example below a critical Zn concentration, Zn uptake is enhanced by AMF application and above the critical level, Zn translocation to plant shoots is restricted. Synergistic association between Zn and AMF is important for sustainable yield and quality. It is observed that grain Zn content in the field is increased with applying AMF. AMF help in the plant growth, development and reproduction, as the Zn is essential for pollen tube formation. By AMF application there is an increment in the content of lycopene, vitamin C, vitamin A and antioxidant activities than non AMF plants in tomato. In traditional driven agriculture, inherent soil fertility is the major source of P with an occasional supply of manure for the crops. But after modernization in agriculture results in overexploitation of the P and results in low crop yield and farm income. Rock phosphate is the major source of the phosphatic fertilizer and is non-renewable which could be exhausted in the next 50–100 years. Moreover, the stimulation of secondary metabolites synthesis results in the improvement of crop quality by sustainable use of phosphatic fertilizers. So P application techniques which can also ameliorate AMF are widely promising. This is how AMF play a pivotal role in developing present era farming practices towards sustainable agriculture. Phytoremediation of heavy metals from different soil types has potential benefit of using AMF in soil. Mycorrhizae disrupt the uptake of the different heavy metals from the rhizosphere and movement from the root to the aerial parts. The major role of AMF in plant growth and development during stressful environments is to translocate important immovable nutrients like Cu, Zn and P and reducing metal toxicity in the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43(12):2427–2431

    Article  CAS  Google Scholar 

  • Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2014) Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an andosol with high aluminum level. Agri Ecosys Env 186:178–184. https://doi.org/10.1016/j.agee.2014.01.029

    Article  CAS  Google Scholar 

  • Ahanger MA, Tittal M, Mir RA, Agarwal RM (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 254:1953–1963. https://doi.org/10.1007/s00709-017-1086-z

    Article  CAS  PubMed  Google Scholar 

  • Al Mutairi AA, Cavagnaro TR, Khor SF, Neumann K, Burton RA, Watts-Williams SJ (2020) The effect of zinc fertilisation and arbuscular mycorrhizal fungi on grain quality and yield of contrasting barley cultivars. Funct Plant Biol 47(2):122–133. https://doi.org/10.1071/FP19220

    Article  CAS  PubMed  Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N, Sabzalian MR (2017) Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis 73(1):15–25. https://doi.org/10.1007/s13199-016-0466-z

    Article  CAS  Google Scholar 

  • Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095

    Article  PubMed  PubMed Central  Google Scholar 

  • Babadi M, Zalaghi R, Taghavi M (2019) A non-toxic polymer enhances sorghum-mycorrhiza symbiosis for bioremediation of cd. Mycorrhiza 29:375–387. https://doi.org/10.1007/s00572-019-00902-5

    Article  PubMed  Google Scholar 

  • Bagheri V, Shamshiri MH, Shirani H, Roosta HR (2018) Nutrient uptake and distribution in mycorrhizal pistachio seedlings under drought stress. J Agric Sci Technol 14:1591–1604. https://doi.org/10.5367/oa.2012.0109

    Article  Google Scholar 

  • Balestrini R, Brunetti C, Chitarra W, Nerva L (2020) Photosynthetic traits and nitrogen uptake in crops: which is the role of Arbuscular Mycorrhizal fungi? Plants 9(9):1105. https://doi.org/10.3390/plants9091105

    Article  CAS  PubMed Central  Google Scholar 

  • Balestrini R, Chitarra W, Antoniou C, Ruocco M, Fotopoulos V (2018) Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. The J Agric Sci 156(5):680–688

    Article  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7(12):15967–15981. https://doi.org/10.3390/su71215799

    Article  CAS  Google Scholar 

  • Barbosa MV, Pedroso DDF, Curi N, Carneiro MAC (2019) Do different arbuscular mycorrhizal fungi affect the formation and stability of soil aggregates? Ciên E Agrotecnol 43. https://doi.org/10.1590/1413-7054201943003519

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59(10):5504–5515. https://doi.org/10.1021/jf200501c

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Rabara RC, Negi S (2018) AMF: the future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45. https://doi.org/10.1016/j.pmpp.2017.11.2017

    Article  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ahmed N, Ashraf M, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett AE, Meek HC (2020) The influence of arbuscular mycorrhizal fungi on plant reproduction. J Chem Ecol 46(8):707–721. https://doi.org/10.1007/s10886-020-01192-4

    Article  CAS  PubMed  Google Scholar 

  • Bettoni MM, Mogor ÁF, Pauletti V, Goicoechea N (2014) Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci Hortic 180:227–235

    Article  CAS  Google Scholar 

  • Bhantana P, Lazarovitch N (2010) Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress. Agric Water Manag 97(5):715–722

    Article  Google Scholar 

  • Bhantana P, Timlin D, Rana MS, Moussa MG, Zhihao D, Sun X, Tan Q, Xiao HC (2020) How to cut down the gap between the Zn requirement and supply of food chain and crop growth: a critical review. Int J Plant, Anim Environ Sci 10:001–026

    CAS  Google Scholar 

  • Bianciotto V, Victorino I, Scariot V, Berruti A (2018) Arbuscular mycorrhizal fungi as natural biofertilizers: current role and potential for the horticulture industry. III Int Symposium Woody Ornament Temperate Zone 1191:207–216. https://doi.org/10.17660/ActaHortic.2018.1191.29

    Article  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895–904. https://doi.org/10.1007/s00442-012-2258-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23(8):797–809

    Article  CAS  Google Scholar 

  • Bolandnazar S, Aliasgarzad N, Neishabury MR, Chaparzadeh N (2007) Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Sci Hortic 114(1):11–15

    Article  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A, Lingua G, D’Agostino G, Gamalero E, Berta G (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Article  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agri Ecosys Environ 116(1-2):72–84

    Article  Google Scholar 

  • Carillo P, Kyratzis A, Kyriacou MC, Dell’Aversana E, Fusco GM, Corrado G, Rouphael Y (2020) Biostimulatory action of Arbuscular Mycorrhizal fungi enhances productivity, functional and sensory quality in ‘Piennolo del Vesuvio’Cherry tomato landraces. Agron. 10(6):911. https://doi.org/10.3390/agronomy10060911

    Article  CAS  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natio Aca Sci 96(11):5952–5959

  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria× ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90(11):1774–1782. https://doi.org/10.1002/jsfa.3998

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant and Soil 304(1–2):315–325. https://doi.org/10.1007/s11104-008-9559-7

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28(5):642–650

    Article  CAS  Google Scholar 

  • Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS One 9(9):108459. https://doi.org/10.1371/journal.pone.0108459

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019) Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci 10:457. https://doi.org/10.3389/fpls.2019.00457

    Article  PubMed  PubMed Central  Google Scholar 

  • Charron G, Furlan V, Bernier-Cardou M, Doyon G (2001a) Response of onion plants to arbuscular mycorrhizae. 1. Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycor 11:187–197

    Article  CAS  Google Scholar 

  • Charron G, Furlan V, Bernier-Cardou M, Doyon G (2001b) Response of onion plants to arbuscular mycorrhizae: 2. Effects of nitrogen fertilization on biomass and bulb firmness. Mycor 11(3):145

    Article  CAS  Google Scholar 

  • Chasapis CT, Nitoupa PSA, Spiliopoulou CA, Stefanidou ME (2020) Recent aspects of the effect on Zn on human health. https://doi.org/10.1007/s00204-020-02702-9 Recent aspects of the effects of zinc on human health

    Book  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516

    Article  PubMed  PubMed Central  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Phyiol 171(2):1009–1023. https://doi.org/10.1104/pp.16.00307

    Article  Google Scholar 

  • Christie P, Li X, Chen B (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261(1):209–217

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycor 16(7):485–494

    Article  CAS  Google Scholar 

  • Copetta A, Todeschini V, Massa N, Bona E, Berta G, Lingua G (2020) Inoculation with arbuscular mycorrhizal fungi improves melon (Cucumis melo) fruit quality under field conditions and plant performance in both field and greenhouse. Plant Biosyst Int J Dealing Aspects Plant Biol:1–12. https://doi.org/10.1080/11263504.2020.1813831

  • Coskun D, Britto DT, Shi W, Kronzucker HJ (2017) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22(8):661–673

  • Dar ZM, Masood A, Asif M, Malik MA (2018) Review on arbuscular mycorrhizal fungi: an approach to overcome drought adversities in plants. Int J Curr Microbiol App Sci 7(3):1040–1049. https://doi.org/10.20546/ijcmas.2018.703.124

    Article  CAS  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179. https://doi.org/10.1016/j.sjbs.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  • Elliott AJ, Daniell TJ, Cameron DD, Field KJ (2020) A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza-acquired nutrients. In: Plants, people, planet A commercial arbuscular mycorrhizal inoculum increases root colonization across wheat cultivars but does not increase assimilation of mycorrhiza‐acquired nutrients

    Google Scholar 

  • El-Nashar YI (2017) Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 55(2):201–209. https://doi.org/10.1007/s11099-016-0650-7

    Article  CAS  Google Scholar 

  • Emmanuel OC, Babalola OO (2020) Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiol Res 126569. https://doi.org/10.1016/j.micres.2020.126569

  • Ercoli L, Schüßler A, Arduini I, Pellegrino E (2017) Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant and Soil 419(1–2):153–167. https://doi.org/10.1007/s11104-017-3319-5

    Article  CAS  Google Scholar 

  • Esteras C, Rambla JL, Sánchez G, López-Gresa MP, González-Mas MC, Fernández-Trujillo JP, Bellés JM, Granell A, Picó MB (2018) Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J Sci Food Agric 98(10):3915–3925. https://doi.org/10.1002/jsfa.8909

    Article  PubMed  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycor 22(3):203–217. https://doi.org/10.1007/s00572-011-0392-0

    Article  CAS  Google Scholar 

  • FAO (2019) Food and agriculture Organization of the United Nations FAOSTAT, http://www.fao.org/faostat/en/#data/QC

    Google Scholar 

  • Field C, Mooney HA (1983) Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia 56(2–3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Fota-Markowska H, Przybyła A, Borowicz I, Modrzewska R (2002) Serum zinc (Zn) level dynamics in blood serum of patients with acute viral hepatitis B and early recovery period. In Annales Universitatis Mariae curie-Sklodowska. Sectio D: Medicina 57(2):201–209

    Google Scholar 

  • Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z (2020) Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-59180-3

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2012) Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. Under NaCl and cd stresses. J Plant Growth Regul 31(3):292–308. https://doi.org/10.1007/s00344-011-9239-3

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK, Graham RD (2004) Differential expression of zinc efficiency during the growing season of barley. Plant and Soil 263:273–282. https://doi.org/10.1023/B:PLSO.0000047741.52700.29

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107(2):242–251

    Article  CAS  PubMed  Google Scholar 

  • Glutsch V, Hamm H, Goebeler M (2019) Zinc and skin: an update. J Deutschen Dermatologischen Gesellschaft 17(6):589–596. https://doi.org/10.1111/ddg.13811

    Article  Google Scholar 

  • Golubkina N, Amagova Z, Matsadze V, Zamana S, Tallarita A, Caruso G (2020d) Effects of Arbuscular Mycorrhizal fungi on yield, biochemical characteristics, and elemental composition of garlic and onion under selenium supply. Plants 9(1):84

    Article  CAS  PubMed Central  Google Scholar 

  • Golubkina N, Gomez LD, Kekina H, Cozzolino E, Simister R, Tallarita A, Torino V, Koshevarov A, Cuciniello A, Maiello R, Cenvinzo V (2020a) Joint selenium–iodine supply and Arbuscular Mycorrhizal fungi inoculation affect yield and quality of chickpea seeds and residual biomass. Plants 9(7):804. https://doi.org/10.3390/plants9070804

    Article  CAS  PubMed Central  Google Scholar 

  • Golubkina N, Krivenkov L, Sekara A, Vasileva V, Tallarita A, Caruso G (2020b) Prospects of Arbuscular Mycorrhizal fungi utilization in production of allium plants. Plants 9(2):279. https://doi.org/10.3390/plants9020279

    Article  CAS  PubMed Central  Google Scholar 

  • Golubkina N, Logvinenko L, Novitsky M, Zamana S, Sokolov S, Molchanova A, Shevchuk O, Sekara A, Tallarita A, Caruso G (2020c) Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 9(3):375. https://doi.org/10.3390/plants9030375

    Article  CAS  PubMed Central  Google Scholar 

  • Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova H, Krivenkov L, Pietrantonio L, Caruso G (2019) Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants 8(4):102

    Article  CAS  PubMed Central  Google Scholar 

  • Gómez-Bellot MJ, Ortuño MF, Nortes PA, Vicente-Sánchez J, Bañón S, Sánchez-Blanco MJ (2015) Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses. Sci Hortic 186:61–69. https://doi.org/10.1016/j.scienta.2015.02.022

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435(7043):819–823

  • Hanen N, Fattouch S, Ammar E, Neffati M (2012) Allium species, ancient health food for the future. Sci Health Soc Aspects Food Indust, pp 343–355

  • Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycor. 25(5):359–376. https://doi.org/10.1007/s00572-014-0617-0

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242. https://doi.org/10.1080/17429145.2015.1052025

    Article  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D, Abd Allah EF (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Sheng M, Tang M (2017) Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front Plant Sci 8:183. https://doi.org/10.3389/fpls.2017.00183

    Article  PubMed  PubMed Central  Google Scholar 

  • Higo M, Azuma M, Kamiyoshihara Y, Kanda A, Tatewaki Y, Isobe K (2020) Impact of phosphorus fertilization on tomato growth and arbuscular mycorrhizal fungal communities. Microorganisms 8(2):178. https://doi.org/10.3390/microorganisms8020178

    Article  CAS  PubMed Central  Google Scholar 

  • Higo M, Sato R, Serizawa A, Takahashi Y, Gunji K, Tatewaki Y, Isobe K (2018) Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system? Peer J 6:e4606. https://doi.org/10.2478/agri-2019-0001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibiremo OS, Olubamiwa O, Agbeniyi SO, Akanbi OSO (2012) Response of cashew seedlings from different nut sizes to phosphate fertilizer and Arbuscular mycorrhizal inoculation in two soils in Nigeria. Int J Plant Anim Environ Sci 2:147–158

    Google Scholar 

  • IFA (2019) International fertilizer association, Paris (France) IFASTAT, https://www.ifastat.org/databases/plant-nutrition

    Google Scholar 

  • Igamberdiev AU, Eprintsev AT (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci 7:1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders I, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycor. 12(5):225–234

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Jansson C, Vogel J, Hazen S, Brutnell T, Mockler T (2018) Climate-smart crops with enhanced photosynthesis. J Exp Bot 69(16):3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Sci. 356:1172–1175. https://doi.org/10.1126/science.aam9970

    Article  CAS  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar‐Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168(3):687–696

  • Joutey NT, Sayel H (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. RevEnv Cont Toxicol 233:45–69. https://doi.org/10.1007/978-3-319-10479-9_2

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664. https://doi.org/10.1007/s10886-012-0134-6

    Article  CAS  PubMed  Google Scholar 

  • Juntahum S, Jongrungklang N, Kaewpradit W, Lumyong S, Boonlue S (2020) Impact of Arbuscular Mycorrhizal fungi on growth and productivity of sugarcane under Field conditions. Sugar Tech 22(3):451–459. https://doi.org/10.1007/s12355-019-00784-z

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant and Soil 231(1):65–79

    Article  CAS  Google Scholar 

  • Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11(6):439–448

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycor. 17(7):581–587

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93(3):307–311

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121(1):1–6. https://doi.org/10.1016/j.scienta.2009.01.001

    Article  CAS  Google Scholar 

  • Kertesz MA, Mirleau P (2004) The role of soil microbes in plant Sulphur nutrition. J Exp Bot 55:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycor 16(6):443–446

    Article  CAS  Google Scholar 

  • Kim SJ, Eo JK, Lee EH, Park H, Eom AH (2017) Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiol. 45(1):20–24. https://doi.org/10.5941/MYCO.2017.45.1.20

    Article  Google Scholar 

  • Kochian LV (2000) Molecular Physiology of Mineral Nutrient Acquisition, Transport, and Utilization, Biochemistry and Molecular Biology of Plants. In Buchanan BB, Gruissem W, and Jones RL (eds) Rockville, pp 1204–1249

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiolo. Planta. 33(1):35–51. https://doi.org/10.1007/s11738-010-0581-z

    Article  CAS  Google Scholar 

  • Kumar S, Saxena S (2019) Arbuscular Mycorrhizal fungi (AMF) from heavy metal-contaminated soils: molecular approach and application in phytoremediation. Biofert Sustain Agri Environ:489–500Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_22

  • Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Li H, Chen XW, Wong MH (2016a) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/organic arsenic in rice grains. Chemo. 145:224–230. https://doi.org/10.1016/j.chemosphere.2015.10.067

    Article  CAS  Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016b) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190. https://doi.org/10.1016/j.scitotenv.2016.07.124

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. SciTot Env 576:234–241. https://doi.org/10.1016/j.scitotenv.2016.10.091

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycor 9(6):331–336

  • Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN (2018) Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58. https://doi.org/10.1017/S0021859618000023

    Article  CAS  Google Scholar 

  • Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutri Clini Prac 30(3):371–382. https://doi.org/10.1177/0884533615570376

    Article  CAS  Google Scholar 

  • Lone R, Shuab R, Wani KA, Ganaie MA, Tiwari AK, Koul KK (2015) Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Sci Hortic 193:55–61

    Article  CAS  Google Scholar 

  • Majewska ML, Rola K, Zubek S (2017) The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycor. 27(2):83–94

    Article  CAS  Google Scholar 

  • Malik AA, Suryapani S, Ahmad J (2011) Chemical vs organic cultivation of medicinal and aromatic plants: the choice is clear. Int J Med Arom Plants 1(1):5–13

    Google Scholar 

  • Marro N, Cofré N, Grilli G, Alvarez C, Labuckas D, Maestri D, Urcelay C (2020) Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono-and rotation-cropped soils. App Soil Ecol 152:103575

    Article  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 147–161. https://doi.org/10.1007/978-3-319-68867-1_4

    Chapter  Google Scholar 

  • Moghadam HRT (2016) Application of super absorbent polymer and ascorbic acid to mitigate deleterious effects of cadmium in wheat. Pesquisa Agropecuária Trop 46(1):9–18. https://doi.org/10.1590/1983-40632016v4638946

    Article  Google Scholar 

  • Mohamed AA, Eweda WE, Heggo AM, Hassan EA (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and Sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Ann Agri Sci 59(1):109–118

    Article  Google Scholar 

  • Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9(1):41. https://doi.org/10.3390/agronomy9010041

    Article  CAS  Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25. https://doi.org/10.1016/j.jenvman.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  • Mosse B, Stribley DP, LeTacon F (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv Microb Ecol 5:137–210 Springer, Boston, MA

    Article  Google Scholar 

  • Natasha G (2009) The disappearing nutrient. Nature 461:716–718

    Article  CAS  Google Scholar 

  • Nguyen TD, Cavagnaro TR, Watts-Williams SJ (2019) The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-019-51369-5

    Article  CAS  Google Scholar 

  • Olowe OM, Olawuyi OJ, Sobowale AA, Odebode AC (2018) Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L.(maize). Curr Plant Biol 15:30–37

    Article  Google Scholar 

  • Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish J Agri Res 1:116–122

    Article  Google Scholar 

  • Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Res 125:35–48. https://doi.org/10.1016/j.fcr.2011.08.005

    Article  Google Scholar 

  • Ortas I, Sari N, Akpinar C, Yetisir H (2013) Selection of arbuscular mycorrhizal fungi species for tomato seedling growth, mycorrhizal dependency and nutrient uptake. Europ J Hort Sci 78(5):209–218

    Google Scholar 

  • Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3(1):91–129

    PubMed  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70(11):6643–6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD (2017) The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-16697-4

    Article  CAS  Google Scholar 

  • Pilbeam DJ (2018) The utilization of nitrogen by plants: A whole plant perspective. Annual Plant Rev 42:305–351. https://doi.org/10.1002/9781444328608.ch13

  • Piliarová M, Ondreičková K, Hudcovicová M, Mihálik D, Kraic J (2019) Arbuscular Mycorrhizal fungi–their life and function in ecosystem. Agri (Pol'nohospodárstvo) 65(1):3–15

    Article  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponce MA, Scervino JM, Erra-Balsells R, Ocampo JA, Godeas AM (2004) Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry 65(13):1925–1930

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12(6):646–652. https://doi.org/10.1097/MCO.0b013e3283312956

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Mycorrhiza-Function, Diversity, state of the art. Springer, Cham, pp 1–7. https://doi.org/10.1007/978-3-319-53064-2_1

    Chapter  Google Scholar 

  • Quiroga G, Erice G, Aroca R, Delgado-Huertas A, Ruiz-Lozano JM (2020) Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. Plants 9(2):148

  • Rabot E, Wiesmeier M, Schlüter S, Vogel HJ (2018) Soil structure as an indicator of soil functions: a review. Geoderma 314:122–137. https://doi.org/10.1016/j.geoderma.2017.11.009

    Article  Google Scholar 

  • Rahimzadeh S, Pirzad A (2017) Arbuscular mycorrhizal fungi and pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycor 27(6):537–552

    Article  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2020) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919. https://doi.org/10.1016/j.jhazmat.2020.123919

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, Hohmann P, Lammel DR, Mansour I, Roy J, van der Heijden MG, Yang G (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol 222(3):1171–1175

    Article  PubMed  Google Scholar 

  • Rillig MC, Muller LA, Lehmann A (2017) Soil aggregates as massively concurrent evolutionary incubators. The ISME J 11(9):1943–1948. https://doi.org/10.1038/ismej.2017.56

    Article  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rouphael Y, Cardarelli M, Bonini P, Colla G (2017) Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front Plant Sci 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  • Rydlová J, Püschel D, Dostálová M, Janoušková M, Frouz J (2016) Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycor. 26(7):757–767

    Article  CAS  Google Scholar 

  • Sadhana B (2014) Arbuscular Mycorrhizal fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci 3(4):384–400

    Google Scholar 

  • Sánchez PA, Salinas JG (1981) Low-input technology for managing Oxisols and Ultisols in tropical America. Adv Agron 34:279–406 Academic press

    Article  Google Scholar 

  • Santander C, Sanhueza M, Olave J, Borie F, Valentine A, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19(2):321–331. https://doi.org/10.1007/s42729-019-00032-z

    Article  CAS  Google Scholar 

  • Sato T, Ezawa T, Cheng W, Tawaraya K (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Sci Plant Nutr 61(2):269–274

    Article  CAS  Google Scholar 

  • Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35(11):1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Stürmer SL, Guilherme LRG, de Souza Moreira FM, de Sousa Soares CRF (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J. Hazard Mater 262:1105–1115. https://doi.org/10.1016/j.jhazmat.2012.09.063

    Article  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497(7447):60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Krüger C, Urgiles N (2016) Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycor. 26(3):199–207

    Article  Google Scholar 

  • Selosse MA, Strullu-Derrien C, Martin FM, Kamoun S, Kenrick P (2015) Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. New Phytol 206:501–506. https://doi.org/10.1111/nph.13371

    Article  PubMed  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma N, Yadav K, Cheema J, Badda N, Aggarwal A (2015) Arbuscular Mycorrhizal Symbiosis and water stress: a critical review. Pert J Trop Agri Sci 38(4):427–453

    Google Scholar 

  • Siani NG, Fallah S, Pokhrel LR, Rostamnejadi A (2017) Natural amelioration of zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol Biochem 112:227–238. https://doi.org/10.1016/j.plaphy.2017.01.001

    Article  CAS  Google Scholar 

  • Singh V, Sharma S, Kunal Gosal SK, Choudhary R, Singh R, Adholeya A, Singh B (2020) Optical sensing and arbuscular mycorrhizal fungi for improving fertilizer nitrogen and phosphorus use efficiencies in maize. J Soil Sci Plant Nutr 20(4):2087–2098. https://doi.org/10.1007/s42729-020-00277-z

  • Sivakumar PV, Palanisamy K, Lenin M (2020) Potential role of arbuscular mycorrizhal fungi (AMF) and vermicompost (vc) on the maturation of Agri-culture crops-a review. S. Asian J life Sci 8(2):24–37. https://doi.org/10.17582/journal.sajls/2020/8.2.24.37

    Article  Google Scholar 

  • Smil V (1999) Detonator of the population explosion. Nature 400(6743):415–415

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057. https://doi.org/10.1104/pp.111.174581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LA, López Andrade SA, Ribeiro Souza SC, Schiavinato MA (2013) Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Int J Phytorem 15(5):465–476. https://doi.org/10.1080/15226514.2012.716099

    Article  CAS  Google Scholar 

  • Tarkka MT, Drigo B, Deveau A (2018) Mycorrhizal microbiomes. Mycor. 28(5–6):403–409

    Article  CAS  Google Scholar 

  • Tawarava K, Tokairin K, Wagatsuma T (2001) Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus, Glomus fasciculatum. App Soil Ecol 17(2):119–124

    Article  Google Scholar 

  • Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105(4):921–929. https://doi.org/10.1111/1365-2745.12788

    Article  CAS  Google Scholar 

  • Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A (2019) Effect of pre-harvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front Plant Sci 10:1212. https://doi.org/10.3389/fpls.2019.01212

    Article  PubMed  PubMed Central  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:1407

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkov VT, Sol S, Rogato A, Chiurazzi M (2020) The functional characterization of LjNRT2. 4 indicates a novel, positive role of nitrate for an efficient nodule N2‐fixation activity. New Phytol 228(2):682–696

  • Vilela LAF, Barbosa MV (2019) Contribution of Arbuscular Mycorrhizal fungi in promoting cadmium tolerance in plants. In: Cad. Tolerance plants. Academic, pp 553–586. https://doi.org/10.1016/b978-0-12-815794-7.00021-7

  • Walder F, van der Heijden MG (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nature Plants 1(11):1–7

    Article  CAS  Google Scholar 

  • Wang FY, Tong RJ, Shi ZY, Xu XF, He XH (2011) Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One 6(2):16949

    Article  CAS  Google Scholar 

  • Wang L, Ji B, Hu Y, Liu R, Sun W (2017a) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Mei D, Chen J, Lin Y, Liu J, Lu H, Yan C (2019) Sequestration of heavy metal by glomalin-related soil protein: implication for water quality improvement in mangrove wetlands. Water Res 148:142–152. https://doi.org/10.1016/j.watres.2018.10.043

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017b) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10(9):1147–1158. https://doi.org/10.1016/j.molp.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts-Williams SJ, Nguyen TD, Kabiri S, Losic D, McLaughlin MJ (2020) Potential of zinc-loaded graphene oxide and arbuscular mycorrhizal fungi to improve the growth and zinc nutrition of Hordeum vulgare and Medicago truncatula. ApplSoil Ecol 150:103464. https://doi.org/10.1016/j.apsoil.2019.103464

    Article  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Wang GY (2011) Arbuscular mycorrhizal fungi and acclimatization of micropropagated citrus. Commu Soil Sci Plant Analy 42(15):1825–1832

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18. https://doi.org/10.1016/j.envexpbot.2015.08.006

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Huang L, Chen B (2019) Arbuscular mycorrhiza and plant chromium tolerance. Soil Ecol Lett:1–11. https://doi.org/10.1007/s42832-019-0015-9

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290. https://doi.org/10.1016/j.soilbio.2013.10.010

    Article  CAS  Google Scholar 

  • Yousaf B, Liu G, Wang R, Imtiaz M, Zia-ur-Rehman M, Munir MAM, Niu Z (2016) Bioavailability evaluation, uptake of heavy metals and potential health risks via dietary exposure in urban-industrial areas. Environ Sci Pollut Res 23(22):2443–22453. https://doi.org/10.1007/s11356-016-7449-8

    Article  CAS  Google Scholar 

  • Zeng L, Li J, Liu J, Wang M (2014) Effects of arbuscular mycorrhizal (AM) fungi on citrus fruit quality under nature conditions. Southwest China. J Agric Sci 27(5):2101–2105. https://doi.org/10.16213/j.cnki.scjas.2014.05.067

    Article  Google Scholar 

  • Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222(1):543–555. https://doi.org/10.1111/nph.15570

    Article  CAS  PubMed  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS (2016) Glomalin: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297. https://doi.org/10.17957/IJAB/15.0085

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am highly grateful to Dr. Ram Chandra Adhikari, Director of Planning and Coordination, of Nepal Agricultural Research Council (NARC) for having a fruitful discussion on the topic. Also, Dr. Adhikari advised me for possible facilities in the NARC to test N and Zn in the samples preserved from another experiment. Moreover my sincere gratitude to Mr. Samaya Gairhe for monitoring and evaluating NARC for his time and contribution in this study. Likely, Basu Regmi chief of the training and scholarship of NARC managed to read this article thoroughly.

Funding

This review is supported by the College of Resources and Environment, Huanzhong Agricultural University (HZAU), Wuhan 430070, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parashuram Bhantana or Cheng-Xiao Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhantana, P., Rana, M.S., Sun, Xc. et al. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 84, 19–37 (2021). https://doi.org/10.1007/s13199-021-00756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00756-6

Keywords