Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Event-Activity Networks in Public Transportation

Timetable Information and Delay Management

  • Schwerpunktbeitrag
  • Published:
Datenbank-Spektrum Aims and scope Submit manuscript

Abstract

Real-time timetable information and delay management in public transportation systems are two challenging applications which can be modeled as optimization problems on dynamically changing, large and complex graphs, so-called event-activity networks.

We describe both applications in detail, review the state-of-the-art and explain the requirements for systems solving these problems in a productive environment. Focussing on recent research on decision support for train dispatchers, we sketch the system architecture for the software prototype PANDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://www.google.com/transit

References

  1. Bast H, Carlsson E, Eigenwillig A, Geisberger R, Harrelson C, Raychev V, Viger F (2010) Fast routing in very large public transportation networks using transfer patterns. In: de Berg M, Meyer U (eds) Algorithms - ESA 2010. Lecture Notes in Computer Science, Vol. 6346. Springer, Berlin Heidelberg, p 290–301

    Chapter  Google Scholar 

  2. Bast H, Delling D, Goldberg AV, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2016) Route planning in transportation networks. In: Kliemann L, Sanders P (eds) Algorithm engineering - selected results and surveys. Lecture Notes in Computer Science, Vol. 9220. Springer, Berlin Heidelberg, p 19–80

    Chapter  Google Scholar 

  3. Bauer R, Schöbel A (2014) Rules of thumb — practical online strategies for delay management. Public Transp 6:85–105

    Article  Google Scholar 

  4. Berger A, Blaar C, Gebhardt A, Müller-Hannemann M, Schnee M (2011) Passenger flow-oriented train disposition. In: Demetrescu C, Halldórsson MM (eds) Proceedings of the 19th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, Vol. 6942. Springer, Berlin Heidelberg, p 227–238

    Google Scholar 

  5. Berger, F (2016) GPU-basierte Parallelisierung von Reiseanfragen im Bahnverkehr mittels CUDA. Master’s thesis, Institut für Informatik, Martin-Luther-Universität Halle-Wittenberg

  6. Delling D, Dibbelt J, Pajor T, Werneck RF (2015) Public transit labeling. In: Bampis E (eds) Experimental Algorithms - 14th International Symposium, SEA 2015. Lecture Notes in Computer Science, Vol. 9125. Springer, Berlin Heidelberg, p 273–285

    Google Scholar 

  7. Delling D, Pajor T, Werneck RF (2015) Round-based public transit routing. Transp Sci 49(3):591–604. doi:10.1287/trsc.2014.0534

    Article  Google Scholar 

  8. Dibbelt J, Pajor T, Strasser B, Wagner D (2013) Intriguingly simple and fast transit routing. In: Bonifaci V, Demetrescu C, Marchetti-Spaccamela A (eds) Experimental algorithms, SEA 2013. Lecture Notes in Computer Science, Vol. 7933. Springer, Berlin Heidelberg, p 43–54

    Google Scholar 

  9. Dollevoet T, Huisman D (2014) Fast heuristics for delay management with passenger rerouting. Public Transp 6:67–84

    Article  Google Scholar 

  10. Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89

    Article  Google Scholar 

  11. HaCon (2017) HAFAS - the perfect connection to your customers. www.hacon.de/hafas-en. Accessed: 19. Febr. 2017

    Google Scholar 

  12. Kanai S, Shiina K, Harada S, Tomii N (2011) An optimal delay management algorithm from passengers’ viewpoints considering the whole railway network. J Rail Transp Plan Manag 1:25–37

    Article  Google Scholar 

  13. Kliewer N, Suhl L (2011) A note on the online nature of the railway delay management problem. Networks 57:28–37

    Article  MathSciNet  MATH  Google Scholar 

  14. Lemnian M, Rückert R, Rechner S, Blendinger C, Müller-Hannemann M (2014) Timing of train disposition: Towards early passenger rerouting in case of delays. In: Funke S, Mihalák M (eds) 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2014. OASICS, Vol. 42. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, Wadern, p 122–137

    Google Scholar 

  15. Müller-Hannemann M, Schnee M (2009) Efficient timetable information in the presence of delays. In: Ahuja R, Möhring RH, Zaroliagis C (eds) Robust and online large-scale optimization. Lecture notes in computer science, Vol. 5868. Springer, Berlin Heidelberg, p 249–272

    Chapter  Google Scholar 

  16. Müller-Hannemann M, Schulz F, Wagner D, Zaroliagis C (2007) Timetable information: models and algorithms. In: Algorithmic methods for railway optimization. Lecture notes in computer science, Vol. 4395. Springer, Berlin Heidelberg, p 67–89

    Chapter  Google Scholar 

  17. Rodriguez MA (2015) The Gremlin graph traversal machine and language (invited talk). In: Proceedings of the 15th Symposium on Database Programming Languages, DBPL 2015. ACM, New York, p 1–10

    Google Scholar 

  18. Rückert R, Lemnian M, Blendinger C, Rechner S, Müller-Hannemann M (2016) PANDA: a software tool for improved train dispatching with focus on passenger flow. Public Transportation. doi:10.1007/s12469-016-0140-0

    Google Scholar 

  19. Schöbel A (2001) A model for the delay management problem based on mixed-integer programming. Electron Notes Theor Comput Sci 50(1): 1–10. doi:10.1016/S1571-0661(04)00160-4

  20. Schöbel A (2006) Customer-oriented optimization in public transportation. Springer, Berlin

    MATH  Google Scholar 

  21. Witt S (2015) Trip-based public transit routing. In: Bansal N, Finocchi I (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science, Vol. 9294. Springer, Berlin Heidelberg, p 1025–1036

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support by grant MU 1482/7-1 within the DFG research group FOR 2083 Integrated Planning in Public Transport and by Deutsche Bahn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Müller-Hannemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller-Hannemann, M., Rückert, R. Dynamic Event-Activity Networks in Public Transportation. Datenbank Spektrum 17, 131–137 (2017). https://doi.org/10.1007/s13222-017-0252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13222-017-0252-y

Keywords