Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolutionary Games with Affine Fitness Functions: Applications to Cancer

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We analyze the dynamics of evolutionary games in which fitness is defined as an affine function of the expected payoff and a constant contribution. The resulting inhomogeneous replicator equation has an homogeneous equivalent with modified payoffs. The affine terms also influence the stochastic dynamics of a two-strategy Moran model of a finite population. We then apply the affine fitness function in a model for tumor–normal cell interactions to determine which are the most successful tumor strategies. In order to analyze the dynamics of concurrent strategies within a tumor population, we extend the model to a three-strategy game involving distinct tumor cell types as well as normal cells. In this model, interaction with normal cells, in combination with an increased constant fitness, is the most effective way of establishing a population of tumor cells in normal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altrock P, Traulsen A (2009) Deterministic evolutionary game dynamics in finite populations. Phys Rev E 80:011909

    Article  MathSciNet  Google Scholar 

  2. Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68:1923–1944

    Article  MathSciNet  Google Scholar 

  3. Attolini C, Michor F (2009) Evolutionary theory of cancer. Ann NY Acad Sci 1168:23–51

    Article  Google Scholar 

  4. Axelrod R, Axelrod DE, Pienta KJ (2006) Evolution of cooperation among tumor cells. Proc Natl Acad Sci USA 103:13474–13479

    Article  Google Scholar 

  5. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  MathSciNet  Google Scholar 

  6. Bach L, Sumpter D, Alsner J, Loeschcke V (2003) Spatial evolutionary games of interaction among generic cancer cells. Comput Math Methods Med 5:47–58

    MATH  Google Scholar 

  7. Bach LA, Bentzen SM, Alsner J, Christiansen FB (2001) An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy. Eur J Cancer 37:2116–2120

    Article  Google Scholar 

  8. Basanta D, Deutsch A (2008) A game theoretical perspective on the somatic evolution of cancer. In: Selected topics in cancer modeling. Modeling and simulation in science, engineering and technology. Birkhäuser, Boston, pp 1–16

    Chapter  Google Scholar 

  9. Basanta D, Simon M, Hatzikirou H, Deutsch A (2008) Evolutionary game theory elucidates the role of glycolysis in glioma progression and invasion. Cell Prolif 41:980–987

    Article  Google Scholar 

  10. Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, Velculescu VE, Vogelstein B, Nowak MA (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3:e225

    Article  MathSciNet  Google Scholar 

  11. Bomze I (1983) Lotka–Volterra equation and replicator dynamics: a two-dimensional classification. Biol Cybern 48:201–211

    Article  MATH  Google Scholar 

  12. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, Karchin R, Kinzler KW, Vogelstein B, Nowak MA (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 107:18545–18550

    Article  Google Scholar 

  13. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    Article  Google Scholar 

  14. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  Google Scholar 

  15. Clarke M, Dick J, Dirks P, Eaves C, Jamieson C, Jones D, Visvader J, Weissman I, Wahl G (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339

    Article  Google Scholar 

  16. Dingli D, Chalub FACC, Santos FC, Van Segbroeck S, Pacheco JM (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101:1130–1136

    Article  Google Scholar 

  17. Durrett R, Schmidt D, Schweinsberg J (2009) A waiting time problem arising from the study of multi-stage carcinogenesis. Ann Appl Probab 19:676–718

    Article  MathSciNet  MATH  Google Scholar 

  18. Fudenberg D, Nowak MA, Taylor C, Imhof LA (2006) Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theor Popul Biol 70:352–363

    Article  MATH  Google Scholar 

  19. Gatenby RA, Vincent TL (2003) An evolutionary model of carcinogenesis. Cancer Res 63:6212–6220

    Google Scholar 

  20. Gerstung M, Beerenwinkel N (2010) Waiting time models of cancer progression. Math Popul Stud Int J Math Demogr 17:115–135

    Article  MathSciNet  MATH  Google Scholar 

  21. Gokhale CS, Traulsen A (2010) Evolutionary games in the multiverse. Proc Natl Acad Sci USA 107:5500–5504

    Article  Google Scholar 

  22. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  23. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc 40:479–519

    Article  MathSciNet  MATH  Google Scholar 

  24. Karlin S, Taylor H (1975) A first course in stochastic processes. Academic Press, San Diego

    MATH  Google Scholar 

  25. Kimura M (1985) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  26. Lessard S, Ladret V (2007) The probability of fixation of a single mutant in an exchangeable selection model. J Math Biol 54:721–744

    Article  MathSciNet  MATH  Google Scholar 

  27. Mansury Y, Diggory M, Deisboeck T (2006) Evolutionary game theory in an agent-based brain tumor model: exploring the ‘genotype-phenotype’ link. J Theor Biol 238:146–156

    Article  MathSciNet  Google Scholar 

  28. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197–205

    Article  Google Scholar 

  30. Moran PAP (1962) The statistical processes of evolutionary theory. Clarendon Press, Oxford

    MATH  Google Scholar 

  31. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  Google Scholar 

  32. Nowak MA (2006a) Evolutionary dynamics: exploring the equations of life. Belknap Press of Harvard University Press, Cambridge

    MATH  Google Scholar 

  33. Nowak MA (2006b) Five rules for the evolution of cooperation. Science 314:1560–1563

    Article  Google Scholar 

  34. Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    Article  Google Scholar 

  35. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28

    Article  Google Scholar 

  36. Ohta T (2002) Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 99:16134

    Article  Google Scholar 

  37. Prügel-Bennett A (1994) Analysis of genetic algorithms using statistical mechanics. Phys Rev Lett 72:1305–1309

    Article  Google Scholar 

  38. Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100:533–538

    Article  MathSciNet  Google Scholar 

  39. Stadler PF (1991) Dynamics of autocatalytic reaction networks. IV: Inhomogeneous replicator networks. Biosystems 26:1–19

    Article  Google Scholar 

  40. Stadler PF, Schuster P (1990) Dynamics of small autocatalytic reaction networks. I. Bifurcations, permanence and exclusion. Bull Math Biol 52:485–508

    MATH  Google Scholar 

  41. Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66:1621–1644

    Article  MathSciNet  Google Scholar 

  42. Taylor C, Nowak MA (2006) Evolutionary game dynamics with non-uniform interaction rates. Theor Popul Biol 69:243–252

    Article  MATH  Google Scholar 

  43. Taylor P, Jonker L (1978) Evolutionary stable strategies and game dynamics. Math Biosci 40:145–156

    Article  MathSciNet  MATH  Google Scholar 

  44. Tomlinson I, Bodmer W (1997) Modelling the consequences of interactions between tumour cells. Br J Cancer 75:157

    Article  Google Scholar 

  45. Tomlinson IP (1997) Game-theory models of interactions between tumour cells. Eur J Cancer 33:1495–1500

    Article  Google Scholar 

  46. Traulsen A, Pacheco JM, Nowak MA (2007) Pairwise comparison and selection temperature in evolutionary game dynamics. J Theor Biol 246:522–529

    Article  MathSciNet  Google Scholar 

  47. Traulsen A, Shoresh N, Nowak MA (2008) Analytical results for individual and group selection of any intensity. Bull Math Biol 70:1410–1424

    Article  MathSciNet  MATH  Google Scholar 

  48. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W, Weigman VJ, Marynen P, Zetterberg A, Naume B, et al. (2010) Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA 107:16910–16915

    Article  Google Scholar 

  49. Wicha M, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883

    Article  Google Scholar 

  50. Wu B, Altrock P, Wang L, Traulsen A (2010) Universality of weak selection. Phys Rev E 82:046106

    Article  Google Scholar 

  51. Zeeman E (1980) Population dynamics from game theory. In: Global theory of dynamical systems, pp 471–497

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Gerstung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstung, M., Nakhoul, H. & Beerenwinkel, N. Evolutionary Games with Affine Fitness Functions: Applications to Cancer. Dyn Games Appl 1, 370–385 (2011). https://doi.org/10.1007/s13235-011-0029-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-011-0029-0

Keywords