Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Adaptation and the Allocation of Pollution Reduction Costs

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We consider a game of abatement of a transboundary pollutant. We use a time-consistent Shapley value allocation of the cost of pollution reduction, and study the sensitivity of such an allocation to countries’ adaptation to pollution. A country’s adaptation to pollution is captured by a change in its damage function. We show that if there is a reduction in the damage cost of one country only, this can harm the other countries. Some countries may end up worse off even in the case where all countries experience a uniform decrease in their damage from pollution. An important policy implication of our analysis is that the Shapley value approach to the allocation of abatement costs does not necessarily provide the right incentives for all players to act on reducing pollution damage. We determine conditions under which a uniform fall in all countries’ pollution damage benefits all countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Assuming a 550 ppm CO2-equivalent stabilization. For more details see Intergovernmental Panel on Climate Change [11], Table 10.8.

  2. For temperature increases of 6 and 7.4 C, Nordhaus and Boyer [15] and Stern [19] give an expected damage of respectively 10.3 and 11.3 percent of the world GDP.

  3. Adaptation options include crop management, ranching practices or more efficient irrigation systems.

  4. US National Research Council. Advancing the Science of Climate Change. Washington, DC: The National Academies Press, 2010.

  5. See United Nations Framework Convention on Climate Change, UNFCCC.

  6. Sixteenth Conference of Parties.

  7. For dynamic non-cooperative games of transboundary pollution, see a recent survey in [14].

  8. The analysis in Sects. 3 and 4 examines the case of an exogenous change of damage costs. In Sect. 5 we present a setup where the level of efforts in adaptation is modeled and is endogenous.

  9. See, e.g., Chander and Tulkens [8] and Germain et al. [10].

  10. This equivalence is lost if one considers a strictly convex damage function. When we check that our results remain qualitatively valid in the case of a quadratic damage function, we use the γ-core assumption.

  11. From Eq. (7) we observe that the value function of a coalition K depends on π j even for jK.

  12. We omit S from the notation and use V(K) instead of V(K,S) if no ambiguity arises.

  13. We thank an anonymous referee for pointing the reference for this result in [4].

  14. Note that we use W to denote the value function in the case of a quadratic damage cost from pollution case and V in case where the damage cost from pollution is linear.

References

  1. Aldy JE, Krupnick AJ, Newell RG, Parry IWH, Pizer WA (2010) Designing climate mitigation policy. J Econ Lit 48(4):903–934

    Article  Google Scholar 

  2. Agrawala S, Bosello F, Carraro C, de Cian E, Lanzi E (2011) Adapting to climate change: costs, benefits, and modelling approaches. Int Rev Environ Resour Econ 5:245–284

    Article  Google Scholar 

  3. Athanassoglu S, Xepapadeas A (2012) Pollution control with uncertain stock dynamics: when, and how, to be precautious. J Environ Econ Manag 63(3):304–320

    Article  Google Scholar 

  4. Bondareva O (1968) Some applications of linear programming to the theory of cooperative games. In: Selected Russian papers in game theory 1959–1965. Princeton University Press, Princeton, pp 79–114.

    Google Scholar 

  5. Botteon M, Carraro C (2001) Environmental coalitions with heterogeneous countries: burden sharing and carbon leakage. In: Ulph A (ed) Environmental policy, international agreements, and international trade. Oxford University Press, New York

    Google Scholar 

  6. Brechet T, Hritonenko N, Yatsenko Y (2013) Adaptation and mitigation in long-term climate policy. Environ Resour Econ 55(2):217–243

    Article  Google Scholar 

  7. Buob S, Stephan G (2011) To mitigate or to adapt: how to confront global climate change. Eur J Polit Econ 27:1–16

    Article  Google Scholar 

  8. Chander P, Tulkens H (1995) A core-theoretic solution for the design of cooperative agreements on transfrontier pollution. Int Tax Public Finance 2:279–293

    Article  Google Scholar 

  9. Dockner EJ, Jorgensen S, Long NV, Sorger G (2000) Differential games in economics and management science. Cambridge books. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Germain M, Toint P, Tulkens H, de Zeeuw A (2003) Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. J Econ Dyn Control 28:79–99

    Article  MATH  Google Scholar 

  11. Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Kozlovskaya N, Petrosyan L, Zenkevich N (2010) Coalitional solution of a game-theoretic emission reduction model. Int Game Theory Rev 12(3):275–286

    Article  MATH  MathSciNet  Google Scholar 

  13. Le Goulven K (2008) Financing mechanisms for adaptation. Commission on Climate Change and Development

  14. Long NV (2011) Dynamic games in the economics of natural resources: a survey. Dyn Games Appl 1(1):115–148

    Article  MATH  MathSciNet  Google Scholar 

  15. Nordhaus WD, Boyer J (2000) Warming the world: economic model of global warming. MIT Press, Cambridge

    Google Scholar 

  16. Petrosyan L, Mamkina S (2006) Dynamic games with coalitional structures. Int Game Theory Rev 8(2):295–307

    Article  MathSciNet  Google Scholar 

  17. Petrosyan L, Zaccour G (2003) Time-consistent Shapley value allocation of pollution cost reduction. J Econ Dyn Control 27:381–398

    Article  MathSciNet  Google Scholar 

  18. Shapley LS (1972) Cores of convex games. Int J Game Theory 11–26

  19. Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge

    Google Scholar 

  20. Zaccour G (2003) Computation of characteristic function values for linear-state differential games. J Optim Theory Appl 117(1):183–194

    Article  MATH  MathSciNet  Google Scholar 

  21. Zehaie F (2009) The timing and strategic role of self-protection. Environ Resour Econ 44(3):337–350

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and the editor for very helpful comments. We thank SSHRC and FQRSC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Benchekroun.

Appendices

Appendix A: Derivation of Value Function (7)

1.1 A.1 Computation of the Value Function of a Coalition of Size k

Suppose there is a coalition K of size k and that each of the nk players that are not in the coalition individually chooses its cost-minimizing strategy. Let V(K,S) be the value function for coalition K; and, for each player j who stays out of the coalition, let value function be J(j,S). The Hamilton–Jacobi–Bellman (HJB) equations associated with the problem of coalition K and of each of the other nk outsiders are, respectively,

$$\begin{aligned} & \rho V(K,S) =\min_{e_{i}}\biggl\{\sum _{i\in K}\biggl[\frac{\gamma }{2}(e_{i}- \bar{e}_i)^{2}+\pi _{i}S \biggr]+V^{\prime }(K,S) \biggl(\sum_{i\in K}e_{i}+ \sum_{l\in I\backslash K}e_{l}-\delta S\biggr)\biggr\}\\ &\quad \text{for all }i\in K,\\ & \rho J(j,S) =\min_{e_{j}}\biggl\{\frac{\gamma }{2}(e_{j}- \bar{e}_{j})^{2}+\pi _{j}S+G^{\prime }(j,S) \biggl(\sum_{v\in K}e_{i}+\sum _{l\in I\backslash K}e_{l}-\delta S\biggr)\biggr\}\quad \text{for }j \notin K \end{aligned}$$

where the ′ refers to the derivative with respect to the stock S. Note that, to economize on notation, we also use i and j to respectively refer to country i and j.

The first-order conditions give, for an interior solution:

$$\begin{aligned} e_{i} =&\bar{e}_{i}-\frac{1}{\gamma }V^{\prime }(K,S), \\ \\ e_{j} =&\bar{e}_{j}-\frac{1}{\gamma }J^{\prime }(j,S). \end{aligned}$$
(36)

It can be shown that V and G of the following form, V(K,S)=A K S+B K and J(j,S)=D j S+E j , satisfy the above system where the coefficients A K ,B K ,D j and E j are found using the undetermined coefficients technique (see e.g., [9]). Let \(\bar{e}=\sum_{i=1}^{n}\bar{e}_{i}\); we have:

$$\begin{aligned} \rho (A_{K}S+B_{K}) =&\frac{k}{2\gamma }A_{K}{}^{2}+ \sum_{i\in K}\pi _{i}S+A_{K}\biggl[ \bar{e}-\frac{k}{\gamma }A_{K}-\frac{1}{\gamma }\sum _{i\in I\backslash K}D_{j}-\delta S\biggr],\\ \rho (D_{j}S+E_{j}) =&\frac{1}{2\gamma }D_{j}{}^{2}+ \pi _{j}S+D_{j}\biggl[\bar{e}-\frac{k}{\gamma }A_{K}-\frac{1}{\gamma }\sum _{i\in I\backslash K}D_{j}-\delta S\biggr] \end{aligned}$$

for all S≥0, which gives

$$\begin{aligned} A_{K} =&\frac{1}{\rho +\delta }\sum_{i\in K}\pi _{i},\\ D_{j} =&\frac{1}{\rho +\delta }\pi _{j} \end{aligned}$$

and

$$\begin{aligned} \rho B_{K} =&A_{K} \biggl( -\frac{k}{2\gamma }A_{K}{}+ \bar{e}-\frac{1}{\gamma }\sum_{i\in I\backslash K}D_{j} \biggr), \\ \rho E_{j} =&D_{j} \biggl( \frac{1}{2\gamma }D_{j}{}+ \bar{e}-\frac{k}{\gamma }A_{K}-\frac{1}{\gamma }\sum _{i\in I\backslash K}D_{j} \biggr) . \end{aligned}$$

The value of a coalition K of size k is thus given by

$$ V(K,S)=\frac{\sum_{i\in K}\pi _{i}}{\rho (\rho +\delta )} \biggl[ \bar{e}-\frac{1}{2\gamma } \frac{1}{\rho +\delta } \biggl( k\sum_{i\in K}\pi _{i}{}+2\sum_{i\in I\backslash K}\pi _{j} \biggr) +\rho S\bigg], $$

or

$$ V(K,S)=\frac{\sum_{i\in K}\pi _{i}}{\rho (\rho +\delta )}\biggl[\bar{e}-\frac{1}{2\gamma (\rho +\delta )}\biggl(2\pi +(k-2)\sum _{i\in K}\pi _{i}\biggr)+\rho S\biggr] $$

where \(\pi =\sum_{i=1}^{n}\pi _{i}\).

Appendix B: Proof of Proposition 1

Using the Shapley value formula (13), we obtain

$$ \frac{\partial \phi _{i}(V,S_{0})}{\partial \pi _{i}}=\sum_{K\subset I\backslash \{i\}}\biggl[ \frac{\partial V(K\cup \{i\})}{\partial \pi _{i}}-\frac{\partial V(K)}{\partial \pi _{i}}\biggr]\frac{k!(n-k-1)!}{n!}. $$

Using (8) and (7), we have, after algebraic manipulations:

For iK:

$$ \frac{\partial V(K,S_{0})}{\partial \pi _{i}}=\frac{\sum_{j\in K}\pi _{j}}{\rho (\rho +\delta )} \biggl[ -\frac{1}{\gamma (\rho +\delta )} \biggr] \text{ } $$

and

$$ \frac{\partial V(K\cup \{i\},S_{0})}{\partial \pi _{i}}=\frac{1}{\rho (\rho +\delta )} \biggl[ \bar{e}+\rho S+\frac{1}{\gamma (\rho +\delta )} \biggl( -\pi -k \biggl( \sum_{j\in K}\pi _{j}+ \pi _{i} \biggr) \biggr) \biggr]. $$

Therefore,

$$\begin{aligned} \frac{\partial \phi _{i}(V,S_{0})}{\partial \pi _{i}} =&\frac{1}{\rho (\rho +\delta )}\sum_{K\subset I\backslash \{i\}} \biggl( \bar{e}+\rho S+\frac{1}{\gamma (\rho +\delta )} \biggl[ -\pi + ( -k+1 ) \sum _{j\in K}\pi _{j}-k\pi _{i} \biggr] \biggr) \\ &{}\times \frac{k!(n-k-1)!}{n!} \\ >&\frac{1}{\rho (\rho +\delta )} \biggl(\bar{e}+\rho S+\frac{-(k+1)\pi }{\gamma (\rho +\delta )} \biggr) >0 \end{aligned}$$

since: \(\bar{e}+\rho S>\frac{n\pi }{\gamma (\rho +\delta )}\) by (11).  □

Appendix C: Proof of Proposition 2

Using the Shapley value formula (13), we obtain

$$\begin{aligned} \frac{\partial \phi _{m}(V,S_{0})}{\partial \pi _{j}} =&\sum_{K\subset I\backslash \{m,j\}}\biggl[ \frac{\partial V(K\cup \{m\})}{\partial \pi _{j}}-\frac{\partial V(K)}{\partial \pi _{j}}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{\substack{ K\subset I\backslash \{m\} \\ ~j\in K}}\biggl[\frac{\partial V(K\cup \{m\})}{\partial \pi _{j}}- \frac{\partial V(K)}{\partial \pi _{j}}\biggr]\frac{k!(n-k-1)!}{n!}. \end{aligned}$$
(37)

For iK, using (8) and (7), we have, after algebraic manipulations:

$$ \frac{\partial V(K,S_{0})}{\partial \pi _{i}}=\frac{\bar{e}+\rho S_{0}}{\rho (\rho +\delta )}-\frac{\pi }{\rho \gamma (\rho +\delta )^{2}}+\frac{-k+1}{\rho \gamma (\rho +\delta )^{2}}\sum _{i\in K}\pi _{i}.\text{ } $$
(38)

For jK,

$$ \frac{\partial V(K,S_{0})}{\partial \pi _{j}}=\frac{-1}{\rho \gamma (\rho +\delta )^{2}}\sum_{i\in K}\pi _{i}. $$
(39)

Substituting (38) and (39) into (37) yields

$$\begin{aligned} \frac{\partial \phi _{m}(V,S_{0})}{\partial \pi _{j}} =&\sum_{\substack{ K\subset I\backslash \{m\} \\ j\in K}}\biggl[ \frac{-k}{\rho \gamma (\rho +\delta )^{2}}\biggl(\sum_{i\in K}\pi _{i}+\pi _{m}\biggr)-\frac{-k+1}{\rho \gamma (\rho +\delta )^{2}}\sum _{i\in K}\pi _{i}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{K\subset I\backslash \{m,j\}}\biggl[\frac{-1}{\rho \gamma (\rho +\delta )^{2}}\biggl(\sum _{i\in K}\pi _{i}+\pi _{m}\biggr)- \frac{-1}{\rho \gamma (\rho +\delta )^{2}}\sum_{i\in K}\pi _{i}\biggr] \\ &{}\times\frac{k!(n-k-1)!}{n!} \\ =&\sum_{\substack{ K\subset I\backslash \{m\} \\ j\in K}}\biggl[\frac{-k}{\rho \gamma (\rho +\delta )^{2}}\pi _{m}+\frac{-1}{\rho \gamma (\rho +\delta )^{2}}\sum_{i\in K}\pi _{i}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{K\subset I\backslash \{m,j\}}\biggl[\frac{-1}{\rho \gamma (\rho +\delta )^{2}}\pi _{m}\biggr]\frac{k!(n-k-1)!}{n!} \\ <&0. \end{aligned}$$

 □

Appendix D: Proof of Proposition 5

We seek to determine if the Shapley value of a player m can be larger when α<1 than when α=1:

$$ \sum_{K\subset I\backslash \{m\}}\bigl(\bigl[V_{\alpha }\bigl(K\cup \{m\}\bigr)-V_{\alpha }(K)\bigr]- \bigl[ V\bigl(K\cup \{m\}\bigr)-V(K) \bigr] \bigr)\frac{k!(n-k-1)!}{n!}>0 $$

where V α is the value function when the marginal damage from pollution is απ i for all i=1,…,n.

Substituting π i by απ i for i=1,…,n in (14) yields

$$\begin{aligned} &\bigl[V_{\alpha }\bigl(K\cup \{m\}\bigr)-V_{\alpha }(K)\bigr]- \bigl[ V\bigl(K\cup \{m\}\bigr)-V(K) \bigr] ~ \\ &\quad =\frac{ ( \alpha -1 ) \pi _{m}}{\rho (\rho +\delta )}(\bar{e}+\rho S_{0})- \frac{ ( \alpha ^{2}-1 ) }{2\gamma \rho (\rho +\delta )^{2}}\bigl[(k+1)\pi _{m}^{2}+2 \bigl( n-1+k^{2}-k \bigr) \pi _{o}\pi _{m}+k^{2} \pi _{o}{}^{2}\bigr] \\ &\quad =\frac{ ( \alpha -1 ) }{2\gamma \rho (\rho +\delta )^{2}} \bigl( 2\gamma (\rho +\delta ) (\bar{e}+\rho S_{0})\pi _{m} \\ &\qquad {}- ( \alpha +1 ) \bigl[ (k+1)\pi _{m}^{2}+2 \bigl( n-1+k^{2}-k \bigr) \pi _{o}\pi _{m}+k^{2}\pi _{o}{}^{2} \bigr] \bigr) , \end{aligned}$$

which is positive if

$$ 2\gamma (\rho +\delta ) (\bar{e}+\rho S_{0})\pi _{m}- ( \alpha +1 ) \bigl[ (k+1)\pi _{m}^{2}+2 \bigl( n-1+k^{2}-k \bigr) \pi _{o}\pi _{m}+k^{2} \pi _{o}{}^{2} \bigr] >0. $$
(40)

The left-hand side of (40) is decreasing in k. Therefore if it is positive for k=n−1, it’s positive for all kn−1.

For k=n−1, condition (40) gives

$$ 2\gamma (\rho +\delta ) (\bar{e}+\rho S_{0})\pi _{m}- ( \alpha +1 ) \bigl[ n\pi _{m}^{2}+2 ( n-1 ) ^{2}\pi _{o}\pi _{m}+ ( n-1 ) ^{2}\pi _{o}{}^{2} \bigr] >0.\text{ } $$

By (11) and the fact that S 0≥0, a sufficient condition for (40) to hold is that

$$ 2n \bigl( ( n-1 ) \pi _{o}+\pi _{m} \bigr) \pi _{m}- ( \alpha +1 ) \bigl( n\pi _{m}^{2}+2 ( n-1 ) ^{2}\pi _{o}\pi _{m}+ ( n-1 ) ^{2}\pi _{o}{}^{2} \bigr) >0 $$

or

$$ 2n \bigl( ( n-1 ) r+r^{2} \bigr) - ( \alpha +1 ) \bigl( nr^{2}+2 ( n-1 ) ^{2}r+ ( n-1 ) ^{2} \bigr) >0. $$

Therefore, we can infer that

$$ \alpha <\frac{nr^{2}+2r ( n-1 ) - ( n-1 ) ^{2}}{nr^{2}+2 ( n-1 ) ^{2}r+ ( n-1 ) ^{2}}. $$

For the right-hand side to be positive, we need

$$ nr^{2}+2r ( n-1 ) - ( n-1 ) ^{2}>0 $$

or

$$ r>\frac{1}{n} \bigl( \sqrt{n+1}-1 \bigr) ( n-1 ) . $$

 □

Appendix E: Proof of Proposition 6

In this appendix we provide sufficient conditions to have

$$ \sum_{K\subset I\backslash \{m\}}\bigl(\bigl[V\bigl(K\cup \{m\}\bigr)-V(K) \bigr]-\bigl[V_{\alpha }\bigl(K\cup \{m\}\bigr)-V_{\alpha }(K)\bigr] \bigr)\frac{k!(n-k-1)!}{n!}>0 $$
(41)

where V α is the value function corresponding to {απ i ,iI} and V is the value function corresponding to {π i ,iI}. From (14), after substituting π i by απ i for all i=1,…,n, we have

$$\begin{aligned} V_{\alpha }\bigl(K\cup \{m\}\bigr)-V_{\alpha }(K) =&\frac{\alpha \pi _{m}}{\rho (\rho +\delta )}( \bar{e}+\rho S_{0})-\frac{\alpha ^{2}}{2\gamma \rho (\rho +\delta )^{2}} \\ &{}\times\biggl[2\pi \pi _{m}+2(k-1)\pi _{m}\sum_{i\in K} \pi _{i}+(k-1)\pi _{m}^{2}+\biggl(\sum _{i\in K}\pi _{i}\biggr)^{2}\biggr]. \end{aligned}$$
(42)

We first show that

$$ \frac{\partial }{\partial \alpha } \bigl[ V_{\alpha }\bigl(K\cup \{m\}\bigr)-V_{\alpha }(K) \bigr] >0, $$
(43)

which implies that V α (K∪{m})−V α (K), and consequently, that the Shapley value for player m is increasing in α. In particular, the Shapley value will be highest for α=1; thus, we can conclude that the Shapley value for player m when α<1 is strictly smaller than when α=1.

Using (42), condition (43) holds iff

$$\begin{aligned} &\frac{\pi _{m}}{\rho (\rho +\delta )}(\bar{e}+\rho S_{0})-\frac{\alpha }{\gamma \rho (\rho +\delta )^{2}}\biggl[2 \pi \pi _{m}+2(k-1)\pi _{m}\sum _{i\in K}\pi _{i} \\ &\quad {}+(k-1)\pi _{m}^{2}+ \biggl(\sum_{i\in K}\pi _{i} \biggr)^{2}\biggr] >0, \end{aligned}$$
(44)
$$\begin{aligned} &\quad \Leftrightarrow \quad \alpha \biggl[ 2\pi \pi _{m}+2(k-1)\pi _{m}\sum _{i\in K}\pi _{i}+(k-1)\pi _{m}^{2}+ \biggl(\sum_{i\in K}\pi _{i} \biggr)^{2}\biggr] \\ &\hphantom{\quad \Leftrightarrow \quad}\quad <\pi _{m}\gamma (\rho +\delta ) ( \bar{e}+\rho S_{0}). \end{aligned}$$
(45)

In the case π k =π o for all km, this condition becomes

$$ \alpha \bigl[ 2 \bigl( ( n-1 ) \pi _{o}+\pi _{m} \bigr) \pi _{m}+2(k-1)\pi _{m}k\pi _{o}+(k-1)\pi _{m}^{2}+(k\pi _{o})^{2}\bigr]<\pi _{m}\gamma (\rho +\delta ) (\bar{e}+\rho S_{0}). $$
(46)

The left-hand side of this inequality is a strictly increasing function of k, and therefore, if the inequality holds for k=n−1, then it holds for all kn−1:

$$\begin{aligned} & \alpha \bigl[ 2 \bigl( ( n-1 ) \pi _{o}+\pi _{m} \bigr) \pi _{m}+2(n-2) ( n-1 ) \pi _{m}\pi _{o}+(n-2)\pi _{m}^{2}+ \bigl( ( n-1 ) \pi _{o} \bigr)^{2}\bigr] \\ &\quad <\pi _{m}\gamma (\rho +\delta ) (\bar{e}+\rho S_{0}) \end{aligned}$$

or

$$ \alpha \bigl[ 2 ( n-1 ) ^{2}\pi _{o}\pi _{m}+2 \pi _{m}^{2}+(n-2)\pi _{m}^{2}+\bigl( ( n-1 ) \pi _{o}\bigr)^{2}\bigr]<\pi _{m}\gamma (\rho + \delta ) (\bar{e}+\rho S_{0}). $$

A sufficient condition is

$$ \alpha \bigl[ 2 ( n-1 ) ^{2}\pi _{o}\pi _{m}+n \pi _{m}^{2}+\bigl( ( n-1 ) \pi _{o} \bigr)^{2}\bigr]<\pi _{m}\gamma (\rho +\delta )\bar{e}. $$

From (11), it is sufficient that

$$ \alpha \bigl[ 2 ( n-1 ) ^{2}\pi _{o}\pi _{m}+n \pi _{m}^{2}+\bigl( ( n-1 ) \pi _{o} \bigr)^{2}\bigr]<\pi _{m}n\pi \text{,} $$

which, after substitution of π=(n−1)π o +π m , gives

$$ h ( \alpha ) \equiv \alpha \bigl( 2 ( n-1 ) ^{2}r+nr^{2}+(n-1)^{2} \bigr) -nr \bigl( ( n-1 ) +r \bigr) <0, $$

where \(r=\frac{\pi _{m}}{\pi _{o}}\). Thus it is sufficient to have h(α)<0 for (41) to be satisfied. The function h is strictly increasing in α with h(0)<0 and h(1)>0. We can therefore conclude that there exists \(\tilde{\alpha}=\frac{nr ( ( n-1 ) +r ) }{2 ( n-1 ) ^{2}r+nr^{2}+(n-1)^{2}}<1\) such that, for all \(\alpha <\tilde{\alpha}\), we have, for all \(( \bar{e},S_{0} ) \): \(\frac{\partial }{\partial \alpha } [ V_{\alpha }(K\cup \{m\})-V_{\alpha }(K) ] >0\) for all KI∖{m} and therefore (41) is satisfied.  □

Appendix F: Proof of Proposition 7a

We have

$$ \frac{\partial }{\partial \pi _{m}}\beta _{m}(t)=\rho \frac{\partial }{\partial \pi _{m}}\phi _{m}\bigl(V,S^{I}(t)\bigr)-\frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}\bigl(V,S^{I}(t)\bigr). $$

To study the sign of \(\frac{\partial }{\partial \pi _{m}}\beta _{m}(t)\), we separately compute \(\frac{\partial }{\partial \pi _{m}}\phi _{m}(V,S^{I}(t))\) and \(\frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}(V, S^{I}(t))\).

Using (13), we get, after simplification,

$$ \frac{\partial }{\partial \pi _{m}}\phi _{m}\bigl(V,S^{I} ( t ) \bigr)= \frac{\bar{e}}{\rho (\rho +\delta )}+\frac{S^{I} ( t ) }{(\rho +\delta )}+\frac{\pi _{m}}{(\rho +\delta )} \frac{\partial S^{I} ( t ) }{\partial \pi _{m}}-\frac{1}{\rho \gamma (\rho +\delta )^{2}}\varOmega $$
(47)

where

$$ \varOmega \equiv \pi +\sum_{K\subset I\backslash \{m\}} \biggl( \pi _{m}k+\sum_{i\in K}\pi _{i} ( k-1 ) \biggr) \frac{k!(n-k-1)!}{n!}. $$

When π j =π o for all jm, we have

$$ \varOmega =\pi +\frac{1}{n} \biggl( \frac{1}{2}n ( n-1 ) \pi _{m}+\pi _{o} \biggl( \frac{1}{3}n \bigl( n^{2}-3n+2 \bigr) \biggr) \biggr). $$

Moreover, differentiating (12) with respect to π m gives

$$ \frac{\partial }{\partial \pi _{m}}S^{I}(t)=\frac{1}{\delta }\biggl(- \frac{n}{\gamma }\frac{1}{\rho +\delta }\biggr) \bigl(1-e^{-\delta t}\bigr)\text{,} $$

and therefore,

$$ \frac{S^{I} ( t ) }{(\rho +\delta )}+\frac{\pi _{m}}{(\rho +\delta )}\frac{\partial S^{I} ( t ) }{\partial \pi _{m}}=\frac{1}{(\rho +\delta )} \biggl( S_{0}e^{-\delta t}+\frac{1}{\delta }\biggl(\bar{e}- \frac{n}{\gamma }\frac{1}{\rho +\delta } ( \pi +\pi _{m} ) \biggr) \bigl(1-e^{-\delta t}\bigr) \biggr) . $$
(48)

Replacing (48) into (47) and π by π m +(n−1)π o gives

$$\begin{aligned} \frac{\partial }{\partial \pi _{m}}\phi _{m}(V,S) =&\frac{\bar{e}}{\rho (\rho +\delta )}+ \frac{1}{(\rho +\delta )} \biggl( S_{0}e^{-\delta t}+\frac{1}{\delta } \biggl(\bar{e}-\frac{n}{\gamma }\frac{1}{\rho +\delta } \bigl( ( n-1 ) \pi _{o}+2\pi _{m} \bigr) \biggr) \\ &{}\times \bigl(1-e^{-\delta t}\bigr) \biggr) \\ &{}-\frac{ 1 }{\rho \gamma (\rho +\delta )^{2}} \biggl( \frac{1}{2} ( n+1 ) \pi _{m}+ \pi _{o}\frac{1}{3} \bigl( n^{2}-1 \bigr) \biggr) . \end{aligned}$$
(49)

We now compute \(\frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}(V,S^{I}(t))\):

$$\begin{aligned} \frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}\bigl(V,S^{I}(t) \bigr) =&\frac{\partial }{\partial \pi _{m}} \biggl( \sum _{K\subset I\backslash \{m\}}\biggl[\frac{dV(K\cup \{m\})}{dt}- \frac{dV(K)}{dt}\biggr]\frac{k!(n-k-1)!}{n!} \biggr) \notag \\ =&\frac{\partial }{\partial \pi _{m}} \biggl( \sum_{K\subset I\backslash \{m\}} \biggl[ \frac{\pi _{m}}{\rho (\rho +\delta )}\biggl[\rho \frac{d}{dt}S^{I} ( t ) \biggr] \biggr] \frac{k!(n-k-1)!}{n!} \biggr) . \end{aligned}$$
(50)

Using (12), we compute \(\frac{d}{dt}S^{I} ( t ) \) and substitute it into (50) to obtain

$$ \frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}(V,S)= \frac{1}{(\rho +\delta )} \biggl( -\delta S_{0}+\bar{e}-\frac{n}{\gamma } \biggl( \frac{ ( n-1 ) \pi _{o}+2\pi _{m}}{\rho +\delta } \biggr) \biggr) e^{-\delta t}. $$
(51)

Proof of Part (i)

By (49) and (51):

$$\begin{aligned} \lim_{t\rightarrow 0}\frac{\partial }{\partial \pi _{m}}\beta _{m}(t) =&\lim _{t\rightarrow 0} \biggl( \rho \frac{\partial }{\partial \pi _{m}}\phi _{m} \bigl(V,S^{I}(t)\bigr)-\frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}\bigl(V,S^{I}(t)\bigr) \biggr) \notag \\ >&\frac{\bar{e}}{(\rho +\delta )}+\frac{\rho }{(\rho +\delta )}S_{0}e^{-\delta t}- \frac{ ( n+3 ) \pi }{2\gamma (\rho +\delta )^{2}} \\ &{}-\frac{1}{(\rho +\delta )} \biggl( -\delta S_{0}+\bar{e}-\frac{n}{\gamma }\biggl( \frac{\pi +\pi _{m}}{\rho +\delta } \biggr) \biggr) \end{aligned}$$
(52)

which gives, after substitution of π by (n−1)π o +π m and simplifications,

$$ \lim_{t\rightarrow 0}\frac{\partial }{\partial \pi _{m}}\beta _{m}(t)>S_{0}+\frac{ ( ( n-3 ) \pi _{o}+3\pi _{m} ) (n-1)}{2\gamma (\rho +\delta )^{2}}, $$
(53)

which is clearly positive for n≥3. For n=2 from (49) and (51) we have

$$ \frac{\partial }{\partial \pi _{m}}\phi _{m}(V,S)=\frac{\bar{e}}{\rho (\rho +\delta )}+ \frac{S^{I} ( t ) }{(\rho +\delta )}+\frac{\pi _{m}}{(\rho +\delta )}\frac{\partial S ( t ) }{\partial \pi _{m}}-\frac{\pi +\pi _{m}}{\rho \gamma (\rho +\delta )^{2}} $$

and

$$ \lim_{t\rightarrow 0} \biggl( \frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}(V,S) \biggr) =\frac{1}{(\rho +\delta )} \biggl( -\delta S_{0}+\bar{e}-\frac{2}{\gamma } \biggl( \frac{\pi +\pi _{m}}{\rho +\delta } \biggr) \biggr) . $$

Therefore, using (48),

$$\begin{aligned} \lim_{t\rightarrow 0}\frac{\partial }{\partial \pi _{m}}\beta _{m}(t) =&\lim _{t\rightarrow 0} \biggl( \frac{\bar{e}}{(\rho +\delta )}+\frac{\rho S^{I} ( t ) }{(\rho +\delta )}+ \frac{\rho \pi _{m}}{(\rho +\delta )}\frac{\partial S ( t ) }{\partial \pi _{m}}-\frac{\pi +\pi _{m}}{\gamma (\rho +\delta )^{2}} \biggr) \\ &-\lim_{t\rightarrow 0} \biggl( \frac{1}{(\rho +\delta )} \biggl( \bar{e}-\delta S_{0}-\frac{2}{\gamma } \biggl( \frac{\pi +\pi _{m}}{\rho +\delta }\biggr) \biggr) \biggr) \\ =&S_{0}+\frac{ ( \pi +\pi _{m} ) }{\gamma (\rho +\delta )^{2}}>0. \end{aligned}$$
(54)

Proof of Part (ii)

Differentiating (13) with respect to π j yields

$$\begin{aligned} \frac{\partial }{\partial \pi _{j}}\phi _{m}(V,S) =&\sum _{\substack{ K\subset I\backslash \{m\} \\ ~j\in K}}\biggl[\frac{-k}{\rho \gamma (\rho +\delta )^{2}}\pi _{m}+ \frac{-1}{\rho \gamma (\rho +\delta )^{2}}\sum_{i\in K}\pi _{i} \biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{K\subset I\backslash \{m,j\}}\biggl[\frac{-1}{\rho \gamma (\rho +\delta )^{2}}\pi _{m}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\frac{-n\pi _{m}}{\delta \gamma ( \rho +\delta ) ^{2}}\bigl(1-e^{-\delta t}\bigr) \end{aligned}$$
(55)

and

$$\begin{aligned} & \frac{d}{dt}\phi _{m}(V,S) =\frac{\pi _{m}}{(\rho +\delta )} \biggl( - \delta S_{0}+\bar{e}-\frac{n}{\gamma }\frac{\pi }{\rho +\delta } \biggr) e^{-\delta t}, \\ \\ &\frac{\partial }{\partial \pi _{j}} \biggl( \frac{d}{dt}\phi _{m} \bigl(V,S^{I}(t)\bigr) \biggr) =-\frac{n\pi _{m}}{\gamma (\rho +\delta )^{2}}e^{-\delta t}. \end{aligned}$$
(56)

Therefore, we can obtain the following:

$$\begin{aligned} \lim_{t\rightarrow 0}\frac{\partial }{\partial \pi _{j}}\beta _{m}(t) =&\lim _{t\rightarrow 0} \biggl( \rho \frac{\partial }{\partial \pi _{j}}\phi _{m} \bigl(V,S^{I}(t)\bigr)-\frac{\partial }{\partial \pi _{j}}\frac{d}{dt}\phi _{m}\bigl(V,S^{I}(t)\bigr) \biggr) \\ =&\sum_{\substack{ K\subset I\backslash \{m\} \\ ~j\in K}}\biggl[\frac{-k}{\gamma (\rho +\delta )^{2}}\pi _{m}+\frac{-k}{\gamma (\rho +\delta )^{2}}\pi _{o}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{K\subset I\backslash \{m,j\}}\biggl[\frac{-1}{\gamma (\rho +\delta )^{2}}\pi _{m}\biggr]\frac{k!(n-k-1)!}{n!}+\frac{n\pi _{m}}{\gamma (\rho +\delta )^{2}} \\ =&-\frac{ ( n-2 ) ( 2n-3 ) }{6n} \biggl( \frac{\pi _{m}+\pi _{o}}{\gamma (\rho +\delta )^{2}} \biggr) -\frac{1}{\gamma (\rho +\delta )^{2}} \pi _{m} \biggl( \frac{1}{2} \biggr) +\frac{n\pi _{m}}{\gamma (\rho +\delta )^{2}} \\ =& \biggl( \frac{1}{6n} \bigl( \bigl( 4n^2+4n-6 \bigr) \pi _{m}- \bigl( 2n^{2}-7n+6 \bigr) \pi _{o} \bigr) \biggr) \frac{1}{\gamma (\rho +\delta )^{2}} \end{aligned}$$
(57)

Therefore \(\lim_{t\rightarrow 0}\frac{\partial }{\partial \pi _{j}}\beta _{m}(t)|_{\pi_{o}=0}>0\).  □

Appendix G: Proof of Proposition 7b

Proof of Part (i)

When t→∞ by (51) \(\lim_{t\rightarrow \infty } ( \frac{\partial }{\partial \pi _{m}}\frac{d}{dt}\phi _{m}(V,S^{I} ( t ) ) ) =0\), so using (49), at π o =0, we have

$$ \lim_{t\rightarrow \infty } \frac{\partial }{\partial \pi _{m}}\beta _{m}(t) \vert _{\pi _{o}=0}=\frac{1}{\delta }\bar{e}-\frac{1}{\delta \gamma (\rho +\delta )^{2}} \bigl( \bigl(4\rho n+(n+1)\delta \bigr)\bigl((\pi _{m})/2\bigr)\bigr) $$
(58)

therefore

$$ \lim_{t\rightarrow \infty } \frac{\partial }{\partial \pi _{m}}\beta _{m}(t) \bigg \vert _{\pi _{o}=0}<0 $$

if and only if

$$ \bar{e}<\frac{1}{\gamma (\rho +\delta )^{2}} \bigl( \bigl(4\rho n+(n+1)\delta \bigr)\bigl((\pi _{m})/2\bigr) \bigr) . $$

Therefore if (2n−1)ρδ>0, then for \(\bar{e}\), such that

$$ \frac{1}{\delta }\frac{\pi _{m}}{\gamma (\rho +\delta )}\leq \frac{1}{\delta }\bar{e}< \frac{1}{\delta \gamma (\rho +\delta )^{2}} \bigl( \bigl(4\rho n+(n+1)\delta \bigr)\bigl((\pi _{m})/2\bigr) \bigr), $$
(59)

we have \(\lim_{t\rightarrow \infty }\frac{\partial }{\partial \pi _{m}}\beta _{m}(t)=\frac{1}{\delta }\bar{e}-\frac{1}{\delta \gamma (\rho +\delta )^{2}}( (4\rho n+(n+1)\delta )((\pi _{m})/2) ) <0\). Condition (59), after simple manipulations, can be rewritten as (24).

Proof of Part (ii)

Using (55) and (56), we have

$$\begin{aligned} \lim_{t\rightarrow \infty }\frac{\partial }{\partial \pi _{j}}\beta _{m}(t) =&\lim _{t\rightarrow \infty } \biggl( \rho \frac{\partial }{\partial \pi _{j}}\phi _{m}\bigl(V,S^{I}(t)\bigr)-\frac{\partial }{\partial \pi _{j}} \frac{d}{dt}\phi _{m}\bigl(V,S^{I}(t)\bigr) \biggr) \\ =&\sum_{\substack{ K\subset I\backslash \{m\} \\ ~j\in K}}\biggl[\frac{-k}{\gamma (\rho +\delta )^{2}}\pi _{m}+\frac{-k}{\gamma (\rho +\delta )^{2}}\pi _{o}\biggr]\frac{k!(n-k-1)!}{n!} \\ &{}+\sum_{K\subset I\backslash \{m,j\}}\biggl[\frac{-1}{\gamma (\rho +\delta )^{2}}\pi _{m}\biggr]\frac{k!(n-k-1)!}{n!}+\frac{-\rho n\pi _{m}}{\delta \gamma ( \rho +\delta ) } \\ <&0. \end{aligned}$$

 □

Appendix H: Derivation of the Value Functions for Quadratic Damage Costs

Let W(I,S) be the value function for the grand coalition. The HJB equation associated with the grand coalition reads:

$$ \rho W(I,S)=\min \Biggl\{\sum_{i=1}^{3} \biggl[\frac{1}{2}(e_{i}-\bar{e}_{i})^{2} \biggr]+\frac{1}{2}\eta _{1}S^{2}+W^{\prime}(I,S) \Biggl(\sum_{i=1}^{3}e_{i}- \delta S\Biggr)\Biggr\} $$

where the ′ refers to the derivative with respect to the stock S.

The first order conditions give for an interior solution:

$$ e_{i}=\bar{e}_{i}-W^{\prime }(I,S). $$

A quadratic value function, W(I,S)=Z I S 2+A I S+B I satisfies the above equation and the coefficients Z I A I B I are found using undetermined coefficient technique. Let \(\bar{e}=\sum_{i\in I}\bar{e}_{i}\); we have:

$$\begin{aligned} \rho \bigl(Z_{I}S^{2}+A_{I}S+B_{I} \bigr) =&\sum_{i=1}^{3}\biggl[ \frac{1}{2}(2Z_{I}S+A_{I})^{2} \biggr]+\frac{1}{2}\eta _{1}S^{2}\\ &{}+(2Z_{I}S+A_{I}) \Biggl(\bar{e}-\sum_{j=1}^{3}(2Z_{I}S+A_{I})- \delta S\Biggr). \end{aligned}$$

Equating the coefficients on both sides of the equality provides two sets of solutions:

$$\begin{aligned} Z_{I} =&\frac{1}{12} \Bigl( - ( 2\delta +\rho ) \pm \sqrt{ \bigl( 12\eta _{1}+4\delta ^{2}+\rho ^{2}+4\delta \rho \bigr) } \,\Bigr), \\ A_{I} =&2\bar{e}\frac{Z_{I}}{\delta +\rho +6Z_{I}}, \\ B_{I} =&\frac{1}{2\rho }A_{I}(2\bar{e}-3A_{I}). \end{aligned}$$

Evolution of stock of pollution under full cooperation is given by:

$$ S^{C}(t)=\frac{\bar{e}-3A_{I}}{6Z_{I}+\delta }+ \biggl( S_{0}- \frac{\bar{e}-3A_{I}}{6Z_{I}+\delta } \biggr) e^{-(6Z_{I}+\delta )t} $$

where we should have:

$$ 6Z_{I}+\delta \geq 0. $$

Therefore, the coefficient of the value function for the grand coalition are:

$$\begin{aligned} Z_{I} =&\frac{1}{12} \bigl( - ( 2\delta +\rho ) +\sqrt{12\eta _{1}+(2\delta +\rho )^{2}}\, \bigr), \\ A_{I} =&2\bar{e}\frac{Z_{I}}{\delta +\rho +6Z_{I}}, \\ B_{I} =&\frac{1}{2\rho }A_{I}(2\bar{e}-3A_{I}), \end{aligned}$$

which can be written as:

$$ Z_{I}=\frac{1}{12}f ( 12 ) ,\qquad A_{I}=g ( 12,6 ) ,\qquad B_{I}=u ( 12,6,3 ) , $$

where

$$\begin{aligned} f ( x ) =&\sqrt{(2\delta +\rho )^{2}+\eta _{1}x}- ( 2 \delta +\rho ), \\ g ( x,q ) =&\frac{2\bar{e}f ( x ) }{x ( \delta +\rho ) +qf ( x ) }, \\ u ( x,q,\kappa ) =&\frac{1}{2\rho }g ( x,q ) \bigl(2\bar{e}- \kappa g ( x,q ) \bigr). \end{aligned}$$

Let W({1},S) be the value function for player i corresponding to the Nash equilibrium. The HJB equation for player 1 reads:

$$ \rho W\bigl(\{1\},S\bigr)=\min \Biggl\{\frac{1}{2}(e_{1}- \bar{e}_{1})^{2}+\frac{1}{2}\eta _{1}S^{2}+W^{\prime } \bigl( \{ 1 \} ,S \bigr) \Biggl(\sum_{j=1}^{3}e_{j}- \delta S\Biggr)\Biggr\}. $$

In the case where players 2 and 3 have no damage cost, their emission strategy is constant and equal to \(\bar{e}_{i}\). Therefore, their value function is zero.

In the same manner as computing the value function for the grand coalition, we can find the coefficient of player 1’s value function for the Nash equilibrium W({1},S)=Z 1 S 2+A 1 S+B 1:

$$\begin{aligned} Z_{1} =&\frac{1}{4}\bigl(-(2\delta +\rho )+\sqrt{(2\delta + \rho )^{2}+4\eta _{1}}\bigr)=\frac{1}{4}f ( 4 ), \\ A_{1} =&2\bar{e}\frac{Z_{1}}{\delta +\rho +2Z_{1}}=g ( 4,2 ), \\ B_{1} =&\frac{1}{2\rho }A_{1}(2\bar{e}-A_{1}) =u ( 4,2,1 ) . \end{aligned}$$

Computing the value function for coalition of Countries 1 and 2:

Denote this coalition by W(K,S)=W({1,2},S), and the value function for player 3 by G(j,S). HJB equation for this coalition reads:

$$\begin{aligned} \rho W(K,S) =&\sum_{i\in \{1,2\}}\biggl[\frac{1}{2} \bigl(W^{\prime }(K,S)\bigr)^{2}\biggr]+\frac{1}{2}\eta _{1}S^{2} \\ &{}+W^{\prime }(K,S)\biggl[\sum _{i\in \{1,2\}}\bigl(\bar{e}_{i}-W^{\prime }(K,S)\bigr)+ \sum_{i=3}\bigl(\bar{e}_{i}-G^{\prime }(i,S) \bigr)-\delta S\biggr]. \end{aligned}$$
(60)

Emission strategy for player 3 is to choose \(e=\bar{e}_{3}\), so G=0. A quadratic value function, W({1,2},S)=Z 12 S 2+A 12 S+B 12 satisfies equality (60). The coefficients of this value function are as follows:

$$\begin{aligned} Z_{12} =&Z_{13}=\frac{1}{8}\bigl(-(2\delta +\rho )+ \sqrt{(2\delta +\rho )^{2}+8\eta _{1}}\bigr), \\ A_{12} =&A_{13}=2\bar{e}\frac{Z_{12}}{\delta +\rho +4Z_{12}}, \\ B_{12} =&B_{13}=\frac{1}{\rho }A_{12}( \bar{e}-A_{12}), \\ Z_{23} =&A_{23}=B_{23}=0. \end{aligned}$$

Finally, the Shapley values can be obtained as follows:

$$\begin{aligned} \phi _{1} =&\frac{1}{3}\bigl[(Z_{I}+Z_{12}+Z_{1})S^{2}+(A_{I}+A_{12}+A_{1})S+(B_{I}+B_{12}+B_{1}) \bigr], \\ \phi _{2} =&\phi _{3} \\ =&\frac{1}{2}Z_{I}S^{2}- \frac{1}{6}(Z_{I}+Z_{12}+Z_{1})S^{2}+ \frac{1}{2}A_{I}S-\frac{1}{6}(A_{I}+A_{12}+A_{1})S+ \frac{1}{2}B_{I}\\ &{}- \frac{1}{6}(B_{I}+B_{12}+B_{1}) \\ =&\frac{1}{6}(2Z_{I}-Z_{12}-Z_{1})S^{2}+ \frac{1}{6}(2A_{I}-A_{12}-A_{1})S+\frac{1}{6}(2B_{I}-B_{12}-B_{1}). \end{aligned}$$

Appendix I: Proof of Proposition 9

Denote by \(\phi _{i,\eta _{1}}^{\prime }\) the derivative of ϕ i (i=1,2,3) with respect to η 1.

$$ \phi _{2,\eta _{1}}^{\prime }=\frac{1}{6}\bigl(2Z_{I}^{\prime }-Z_{12}^{\prime }-Z_{1}^{\prime } \bigr)S^{2}+\frac{1}{6}\bigl(2A_{I}^{\prime }-A_{12}^{\prime }-A_{1}^{\prime } \bigr)S+\frac{1}{6}\bigl(2B_{I}^{\prime }-B_{12}^{\prime }-B_{1}^{\prime } \bigr). $$

Here ′ refers to the derivative with respect to η 1.

Let

$$\begin{aligned} \mathit{ZZ} =&2Z_{I}^{\prime }-Z_{12}^{\prime }-Z_{1}^{\prime },\\ \mathit{AA} =&2A_{I}^{\prime }-A_{12}^{\prime }-A_{1}^{\prime },\\ \mathit{BB} =&2B_{I}^{\prime }-B_{12}^{\prime }-B_{1}^{\prime }. \end{aligned}$$

Below we show that ZZ,AA and BB are negative.

Using (29) and (30) we can present ZZ,AA,BB in the following forms:

$$\begin{aligned} \mathit{ZZ} =&2h ( 12 ) -h ( 8 ) -h ( 4 ), \\ \mathit{AA} =&2w ( 12 ) -w ( 8 ) -w ( 4 ), \\ \mathit{BB} =&\bar{e} \bigl( 2w ( 12 ) -w ( 8 ) -w ( 4 ) \bigr) +2m ( 12 ) -m ( 8 ) -m ( 4 ), \end{aligned}$$

where \(h ( x ) =f_{x}^{\prime } ( x ) \), and w(x) and m(x) are given by:

$$\begin{aligned} w ( x ) =&\frac{8\bar{e}(\delta +\rho )}{(2 ( \delta +\rho ) +f ( x ) )^{2}}h ( x ),\\ m ( x ) =&\frac{-\bar{e}~f ( x ) }{2 ( \delta +\rho ) +f ( x ) }w ( x ). \end{aligned}$$

The h(x), w(x) and m(x) are decreasing functions of x. Therefore ZZ, AA and BB are negative, and the Shapley values for players 2 and 3 are decreasing in η 1. □

Appendix J: Proof of Proposition 10

Proof of Part (i)

According to (15), it is enough to show that \(\frac{\partial }{\partial \eta _{1}} \phi _{1} ( t ) \vert _{t=0}\) is positive and \(\frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{1} ( t ) \vert _{t =0}\) is negative.

First, note that from (35) we can infer that

$$ \frac{\partial }{\partial \eta _{1}}S ( t ) \bigg \vert _{t=0}=0. $$
(61)

Now:

$$\begin{aligned} \frac{\partial }{\partial \eta _{1}} \phi _{1} ( t ) =&\frac{1}{3} \biggl( \frac{\partial }{\partial \eta _{1}}(Z_{I}+Z_{12}+Z_{1})S^{2} ( t ) +\frac{\partial }{\partial \eta _{1}}(A_{I}+A_{12}+A_{1})S ( t )\\ &{} +\frac{\partial }{\partial \eta _{1}}(B_{I}+B_{12}+B_{1}) \biggr) \\ &{}+\frac{1}{3} \bigl( 2(Z_{I}+Z_{12}+Z_{1})S+ ( A_{I}+A_{12}+A_{1} ) \bigr) \frac{\partial }{\partial \eta _{1}}S ( t) \end{aligned}$$

Derivatives of (29) and (30) with respect to η 1 are positive. This, together with (61), implies that \(\frac{\partial }{\partial \eta _{1}} \phi _{1} ( t ) \vert _{t=0}\) is positive.

On the other hand, around t=0, we can infer that

$$\begin{aligned} \frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{1} ( t ) \bigg \vert _{t=0} =&\frac{1}{3} \frac{\partial }{\partial \eta _{1}} \biggl( (Z_{I}+Z_{12}+Z_{1}) \frac{\partial }{\partial t}S^{2} ( t ) \biggr) \bigg \vert _{t=0}\\ &{}+ \frac{1}{3} \frac{\partial }{\partial \eta _{1}} \biggl( (A_{I}+A_{12}+A_{1}) \frac{\partial }{\partial t}S ( t ) \biggr) \bigg \vert _{t=0} \\ =&\frac{1}{3}\frac{\partial }{\partial \eta _{1}} \biggl( (Z_{I}+Z_{12}+Z_{1}) \biggl( -2(6Z_{I}+ \delta ) \biggl( S_{0}-\frac{1}{6Z_{I}+\delta }(\bar{e}-3A_{I}) \biggr) S_{0} \biggr) \biggr) \\ &{}+\frac{1}{3}\frac{\partial }{\partial \eta _{1}} \biggl( (A_{I}+A_{12}+A_{1}) \biggl( -(6Z_{I}+\delta ) \biggl( S_{0}- \frac{1}{6Z_{I}+\delta }(\bar{e}-3A_{I}) \biggr) \biggr) \biggr). \end{aligned}$$

Therefore, by using (28) and (32), we can obtain that \(\frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{1} ( 0 ) \) is negative.

Proof of Part (ii)

From (34) we can infer that

$$\begin{aligned} \frac{\partial }{\partial \eta _{1}} \phi _{2} ( t ) \bigg \vert _{t=0} =&\frac{1}{6} \biggl( \frac{\partial }{\partial \eta _{1}}(2Z_{I}-Z_{12}-Z_{1})S^{2} ( t ) +\frac{\partial }{\partial \eta _{1}}(2A_{I}-A_{12}-A_{1})S ( t )\\ &{} +\frac{\partial }{\partial \eta _{1}}(2B_{I}-B_{12}-B_{1}) \biggr) \\ &{}+\frac{1}{6} \bigl( 2(2Z_{I}-Z_{12}-Z_{1})S ( t ) + ( 2A_{I}-A_{12}-A_{1} ) \bigr) \frac{\partial }{\partial \eta _{1}}S ( t ). \end{aligned}$$

By the proof of Proposition 9, Appendix I, \(\frac{\partial }{\partial \eta _{1}}(2Z_{I}-Z_{12}-Z_{1}),~\frac{\partial }{\partial \eta _{1}}(2A_{I}-A_{12}-A_{1})\), and \(\frac{\partial }{\partial \eta _{1}}(2B_{I}-B_{12}-B_{1})\) are negative. Implementing (61), we can deduce that \(\frac{\partial }{\partial \eta _{1}} \phi _{2} ( t ) \vert _{t=0}<0\).

It remains to show that \(\frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{2} ( t ) \vert _{t=0}>0\):

$$\begin{aligned} \frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{2} ( t ) \bigg \vert _{t=0} =&\frac{1}{6} \frac{\partial }{\partial \eta _{1}} \biggl( (2Z_{I}-Z_{12}-Z_{1}) \frac{\partial }{\partial t}S^{2} ( t ) \biggr)\\ &{} +\frac{1}{6} \frac{\partial }{\partial \eta _{1}} \biggl( (2A_{I}-A_{12}-A_{1}) \frac{\partial }{\partial t}S ( t ) \biggr) \\ =&\frac{1}{6}\frac{\partial }{\partial \eta _{1}} \biggl( (2Z_{I}-Z_{12}-Z_{1}) \\ &{}\times\biggl( -2(6Z_{I}+ \delta )\biggl( S_{0}-\frac{1}{6Z_{I}+\delta }(\bar{e}-3A_{I}) \biggr) S_{0} \biggr) \biggr) \\ &{}+\frac{1}{6}\frac{\partial }{\partial \eta _{1}} \biggl( (2A_{I}-A_{12}-A_{1}) \\ &{}\times\biggl( -(6Z_{I}+\delta )\biggl( S_{0}- \frac{1}{6Z_{I}+\delta}(\bar{e}-3A_{I}) \biggr) \biggr) \biggr). \end{aligned}$$

After some simple manipulations, we can obtain that \(\frac{\partial }{\partial \eta _{1}} \frac{\partial }{\partial t}\phi _{2} ( t ) \vert _{t=0}>0\). Therefore β 2(t)=β 3(t) is decreasing in η 1 around zero.  □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benchekroun, H., Taherkhani, F. Adaptation and the Allocation of Pollution Reduction Costs. Dyn Games Appl 4, 32–57 (2014). https://doi.org/10.1007/s13235-013-0085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-013-0085-8

Keywords