Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Incentive Compatibility in Dynamic Mechanism Design With Exit Option in a Markovian Environment

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

This paper studies dynamic mechanism design in a Markovian environment and analyzes a direct mechanism model of a principal-agent framework in which the agent is allowed to exit at any period. We consider that the agent’s private information, referred to as state, evolves over time. The agent makes decisions of whether to stop or continue and what to report at each period. The principal, on the other hand, chooses decision rules consisting of an allocation rule and a set of payment rules to maximize her ex-ante expected payoff. In order to influence the agent’s stopping decision, one of the terminal payment rules is posted-price, i.e., it depends only on the realized stopping time of the agent. This work focuses on the theoretical design regime of the dynamic mechanism design when the agent makes coupled decisions of reporting and stopping. A dynamic incentive compatibility constraint is introduced to guarantee the robustness of the mechanism to the agent’s strategic manipulation. A sufficient condition for dynamic incentive compatibility is obtained by constructing the payment rules in terms of a set of functions parameterized by the allocation rule. The payment rules are then pinned down up to a constant in terms of the allocation rule by deriving a first-order condition. We show cases of relaxations of the principal’s mechanism design problem and provide an approach to evaluate the loss of robustness of the dynamic incentive compatibility when the problem solving is relaxed due to analytical intractability. A case study is used to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akan M, Ata B, Dana JD Jr (2015) Revenue management by sequential screening. J Econ Theory 159:728–774

    Article  MathSciNet  MATH  Google Scholar 

  2. Akbarpour M, Li S, Gharan SO (2020) Thickness and information in dynamic matching markets. J Political Econ 128(3):783–815

    Article  Google Scholar 

  3. Anderson A, Smith L (2010) Dynamic matching and evolving reputations. Rev Econ Stud 77(1):3–29

    Article  MathSciNet  MATH  Google Scholar 

  4. Ano K (2009) Optimal stopping problem with uncertain stopping and its application to discrete options. In Presented at the 2nd Symposium on Optimal Stopping with Applications

  5. Ash RB (2014) Real analysis and probability: probability and mathematical statistics: a series of monographs and textbooks. Academic press, Cambridge

    Google Scholar 

  6. Athey S, Segal I (2013) An efficient dynamic mechanism. Econometrica 81(6):2463–2485

    Article  MathSciNet  MATH  Google Scholar 

  7. Azevedo EM, Budish E (2019) Strategy-proofness in the large. Rev Econ Stud 86(1):81–116

    MathSciNet  MATH  Google Scholar 

  8. Bapna A, Weber TA (2005) Efficient dynamic allocation with uncertain valuations. Available at SSRN 874770

  9. Baron DP, Besanko D (1984) Regulation and information in a continuing relationship. Inf Econ Policy 1(3):267–302

    Article  Google Scholar 

  10. Bergemann D, Välimäki J (2010) The dynamic pivot mechanism. Econometrica 78(2):771–789

    Article  MathSciNet  MATH  Google Scholar 

  11. Berger A, Müller R, Naeemi SH (2010) Path-monotonicity and truthful implementation. Technical Report 603, Maastricht University

  12. Blackwell D (1965) Discounted dynamic programming. Annal Math Stat 36(1):226–235

    Article  MathSciNet  MATH  Google Scholar 

  13. Blasques F, Koopman SJ, Lucas A (2020) Nonlinear autoregressive models with optimality properties. Econ Rev 39(6):559–578

    Article  MathSciNet  MATH  Google Scholar 

  14. Board S, Skrzypacz A (2016) Revenue management with forward-looking buyers. J Polit Econ 124(4):1046–1087

    Article  Google Scholar 

  15. Courty P, Hao L (2000) Sequential screening. Rev Econ Stud 67(4):697–717

    Article  MathSciNet  MATH  Google Scholar 

  16. Deb R, Said M (2015) Dynamic screening with limited commitment. J Econ Theory 159:891–928

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubins LE, Sudderth WD (1977) Countably additive gambling and optimal stopping. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41(1):59–72

    Article  MathSciNet  MATH  Google Scholar 

  18. Eső P, Szentes B (2007) Optimal information disclosure in auctions and the handicap auction. Rev Econ Stud 74(3):705–731

    Article  MathSciNet  MATH  Google Scholar 

  19. Findeisen S, Sachs D (2016) Education and optimal dynamic taxation: the role of income-contingent student loans. J Public Econ 138:1–21

    Article  Google Scholar 

  20. Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge

    MATH  Google Scholar 

  21. Gallien J (2006) Dynamic mechanism design for online commerce. Oper Res 54(2):291–310

    Article  MathSciNet  MATH  Google Scholar 

  22. Gershkov A, Moldovanu B (2009) Dynamic revenue maximization with heterogeneous objects: a mechanism design approach. Am Econ J Microecon 1(2):168–98

    Article  Google Scholar 

  23. He XD, Hu S, Obłój J, Zhou XY (2019) Optimal exit time from casino gambling: Strategies of precommitted and naive gamblers. SIAM J Control Optim 57(3):1845–1868

    Article  MathSciNet  MATH  Google Scholar 

  24. Jacka S, Lynn J (1992) Finite-horizon optimal stopping, obstacle problems and the shape of the continuation region. Stochast Stochast Rep 39(1):25–42

    Article  MathSciNet  MATH  Google Scholar 

  25. Kakade SM, Lobel I, Nazerzadeh H (2013) Optimal dynamic mechanism design and the virtual-pivot mechanism. Oper Res 61(4):837–854

    Article  MathSciNet  MATH  Google Scholar 

  26. Kruse T, Strack P (2015) Optimal stopping with private information. J Econ Theory 159:702–727

    Article  MathSciNet  MATH  Google Scholar 

  27. Kruse T, Strack P (2018) An inverse optimal stopping problem for diffusion processes. Math Operat Res 44(2):423–439

    Article  MathSciNet  MATH  Google Scholar 

  28. Lamberton D, et al. (2009) Optimal stopping and american options. Ljubljana Summer School on Financial Mathematics, p 134

  29. Li S, Yılmaz Y, Wang X (2014) Quickest detection of false data injection attack in wide-area smart grids. IEEE Trans Smart Grid 6(6):2725–2735

    Article  Google Scholar 

  30. Lin W-Y, Lin G-Y, Wei H-Y (2010) Dynamic auction mechanism for cloud resource allocation. In: Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp 591–592. IEEE Computer Society

  31. Lovász L, Winkler P (1995) Efficient stopping rules for markov chains. In: Proceedings of the 27th annual ACM symposium on Theory of computing, pp 76–82

  32. Lubin B, Parkes DC (2012) Approximate strategyproofness. Current Sci 103(9):1021–1032

    Google Scholar 

  33. Lundgren R, Silvestrov DS (2010) Optimal stopping and reselling of european options. In: Rykov V, Balakrishnan N, Nikulin M (eds) Mathematical and statistical models and methods in reliability. Springer, Berlin, pp 371–389

    Chapter  MATH  Google Scholar 

  34. Makris M, Pavan A (2021) Taxation under learning-by-doing. J Political Econ (in press)

  35. Myerson RB (1981) Optimal auction design. Math Oper Res 6(1):58–73

    Article  MathSciNet  MATH  Google Scholar 

  36. Nazerzadeh H, Saberi A, Vohra R (2013) Dynamic pay-per-action mechanisms and applications to online advertising. Oper Res 61(1):98–111

    Article  MathSciNet  MATH  Google Scholar 

  37. Pai MM, Vohra R (2013) Optimal dynamic auctions and simple index rules. Math Oper Res 38(4):682–697

    Article  MathSciNet  MATH  Google Scholar 

  38. Parkes DC (2007) Online mechanisms. In: Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) Algorithmic game theory. Cambridge University Press, Cambridge, pp 411–440

    Chapter  Google Scholar 

  39. Parkes DC, Singh S (2003) An mdp-based approach to online mechanism design. In: Proceedings of the 16th international conference on neural information processing systems, pp 791–798

  40. Pathak PA, Sönmez T (2008) Leveling the playing field: sincere and sophisticated players in the boston mechanism. Am Econ Rev 98(4):1636–52

    Article  Google Scholar 

  41. Pavan A, Segal I, Toikka J (May 2009) Dynamic mechanism design: Incentive compatibility, profit maximization and information disclosure. Discussion Papers 1501, Northwestern University, Center for Mathematical Studies in Economics and Management Science

  42. Pavan A, Segal I, Toikka J (2014) Dynamic mechanism design: a myersonian approach. Econometrica 82(2):601–653

    Article  MathSciNet  MATH  Google Scholar 

  43. Peng G, Zhu Q (2020) Sequential hypothesis testing game. In Proceedings of the 54th annual conference on information sciences and systems (CISS), IEEE, pp 1–6

  44. Peskir G, Shiryaev A (2006) Optimal stopping and free-boundary problems. Birkhäuser, Basel

    MATH  Google Scholar 

  45. Quah JK-H, Strulovici B (2012) Aggregating the single crossing property. Econometrica 80(5):2333–2348

    Article  MathSciNet  MATH  Google Scholar 

  46. Rochet J-C (1987) A necessary and sufficient condition for rationalizability in a quasi-linear context. J Math Econ 16(2):191–200

    Article  MATH  Google Scholar 

  47. Rogerson WP (1985) The first-order approach to principal-agent problems. Econometrica 53(6):1357–1367

    Article  MathSciNet  MATH  Google Scholar 

  48. Said M (2012) Auctions with dynamic populations: efficiency and revenue maximization. J Econ Theory 147(6):2419–2438

    Article  MathSciNet  MATH  Google Scholar 

  49. Salacuse JW (2000) Renegotiating international project agreements. Fordham Int’l L.J., 24:1319

  50. Tadelis S, Segal I (2005) Lectures in contract theory. Lecture notes for UC Berkeley and Stanford University

  51. Tartakovsky AG, Veeravalli VV (2008) Asymptotically optimal quickest change detection in distributed sensor systems. Sequential Anal 27(4):441–475

    Article  MathSciNet  MATH  Google Scholar 

  52. Vickrey W (1961) Counterspeculation, auctions, and competitive sealed tenders. J Finance 16(1):8–37

    Article  MathSciNet  Google Scholar 

  53. Villeneuve S (2007) On threshold strategies and the smooth-fit principle for optimal stopping problems. J Appl Probability 44(1):181–198

    Article  MathSciNet  MATH  Google Scholar 

  54. Vulcano G, Van Ryzin G, Maglaras C (2002) Optimal dynamic auctions for revenue management. Manage Sci 48(11):1388–1407

    Article  MATH  Google Scholar 

  55. Williams N (2011) Persistent private information. Econometrica 79(4):1233–1275

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang W (2012) Endogenous preferences and dynamic contract design. The B.E. J Theor Econ, vol 12, no 1

  57. Zhang Y (2009) Dynamic contracting with persistent shocks. J Econ Theory 144(2):635–675

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by awards ECCS-1847056 and CNS-2027884 from National Science of Foundation (NSF), and grant W911NF-19-1-0041 from Army Research office (ARO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

For notational compactness, we suppress the notations \(h_{t-1}^{\theta }\), \(h_{t-1}^{{\hat{\theta }}}\), and \(h^{a}_{t-1}\) from \(\alpha , \phi , \xi \), and \(\sigma \).

Proof of Proposition 1

The proof of the only if part directly follows from the optimality of truthful reporting and here we only provide the proof of the if part. Suppose, on the contrary, the truthful reporting strategy \(\sigma ^{*}\) satisfies (18) and (19) but not (16) and (17). Then there exists a reporting strategy \(\sigma '\) and a state \(\theta _{t}\), at period \(t\in {\mathbb {T}}\), such that \(V^{\alpha ,\phi ,\xi ,\rho }_{t}(\theta _{t};\sigma ')> V^{\alpha ,\phi ,\xi ,\rho }_{t}(\theta _{t};\sigma ^{*})\). Suppose that the optimal stopping rule with \(\sigma ^{*}\) calls for stopping and the agent decides to continue by using \(\sigma '\), i.e.,

$$\begin{aligned} J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t})< {\mathbb {E}}^{\varXi _{\alpha ;\sigma '}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ]. \end{aligned}$$

Hence, there exists some \(\varepsilon >0\) such that

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;\sigma '}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] \ge J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t}) + 2\varepsilon . \end{aligned}$$
(85)

Let \(\sigma ''\) be the reporting strategy such that if \(\sigma ''\) and \(\sigma '\) have the same reporting strategies from period t to \(t+k\), for some \(k\ge 0\), then

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;\sigma ''}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] \ge {\mathbb {E}}^{\varXi _{\alpha ;\sigma '}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] - \varepsilon . \end{aligned}$$
(86)

From (85) and (86), we have

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;\sigma ''}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] \ge J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t}) + \varepsilon . \end{aligned}$$
(87)

Here, (87) implies that any deviation(s) for the periods from t to \(t+k\) (reporting truthfully for all other periods) can improve the value \(V^{\alpha ,\phi ,\xi ,\rho }_{t}\).

Let \({\hat{\sigma }}^{s}\) denote the reporting strategy that differs only at period s from \(\sigma ^{*}\) and \({\hat{\sigma }}^{s}_{s} = \sigma ''_{s}\), for \(s\in [t,t+k]\). Then, we have

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-1}}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] > J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t}). \end{aligned}$$
(88)

Now, we look at period \(t+k-1\). Because \(\sigma ^{*}\) satisfies (18) and (19), we have, for all \(\theta _{t+k-1}\in \varTheta _{t+k-1}\),

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-2}}[h^{\theta }_{t+k-1}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+k-1}(\theta _{t+k-1}) \big ] = V^{\alpha ,\phi ,\xi ,\rho }_{t+k-1}(\theta _{t+k-1})\\&\quad \ge \max \Big (J^{\alpha ,\phi ,\xi ,\rho }_{1,t+k-1}(t+k-1,\theta _{t+k-1}, {\hat{\sigma }}^{t+k-1}_{t+k-1}(\theta _{t+k-1})|h^{\theta }_{t+k-2}) , {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-1}}[h^{\theta }_{t+k-1}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+k}({\tilde{\theta }}_{t+k}) \big ] \Big )\\&\quad = V^{\alpha ,\phi ,\xi ,\rho }_{t+k-1}(\theta _{t+k-1};{\hat{\sigma }}^{t+k-1}_{t+k-1}). \end{aligned}\nonumber \\ \end{aligned}$$
(89)

Then,

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-2}}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] \ge {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-1}}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ]. \end{aligned} \end{aligned}$$
(90)

From (88) and (90), we have

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t+k-2}}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] > J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t}). \end{aligned}$$

Backward induction yields

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha ;{\hat{\sigma }}^{t}}[h^{\theta }_{t}]}\big [V^{\alpha ,\phi ,\xi ,\rho }_{t+1}({\tilde{\theta }}_{t+1}) \big ] > J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(t,\theta _{t}), \end{aligned}$$

which contradicts the fact that \(\sigma ^{*}\) satisfies (18) and (19).

Following the similar analysis, we can prove the cases when the optimal stopping rule with truthful \(\sigma ^{*}\) (1) calls for stopping and the agent decides to stop, (2) calls for continuing and the agent decides to continue, and (3) calls for continuing and the agent decides to stop. \(\square \)

Proof of Lemma 1

We prove (23) here. The proof of (24) can be done analogously. For any \(\tau \in {\mathbb {T}}\), the agent’s ex-ante expected payoff (2) can be written as

$$\begin{aligned} \begin{aligned} J^{\alpha ,\phi ,\xi ,\rho }_{1}(\tau )&= {\mathbb {E}}^{\varXi _{\alpha }}\Bigg [ \sum ^{\tau -1}_{t=1}\Big [ \delta ^{t+1}\big [ u_{1,t+1}({\tilde{\theta }}_{t+1}, \alpha _{t+1}( {\tilde{\theta }}_{t+1} )) +\xi _{t+1}({\tilde{\theta }}_{t+1})\big ]+\rho (t+1) \\&\quad + \delta ^{t}\big [ \phi _{t}({\tilde{\theta }}_{t}) -\xi _{t}({\tilde{\theta }}_{t}) \big ] - \rho (t)\Big ] + \delta \big [u_{1,1}({\tilde{\theta }}_{1},\alpha _{1}({\tilde{\theta }}_{1}))+\xi _{1}({\tilde{\theta }}_{1})] +\rho (1) \Bigg ]. \end{aligned} \end{aligned}$$

From law of total expectation, we have

$$\begin{aligned} \begin{aligned} J^{\alpha ,\phi ,\xi ,\rho }_{1}(\tau )&= {\mathbb {E}}^{\varXi _{\alpha }}\Bigg [ \sum ^{\tau -1}_{t=1}\Big [ {\mathbb {E}}^{\alpha ;\theta _{t}}\Big [ \delta ^{t+1}\big [ u_{1,t+1}({\tilde{\theta }}_{t+1}, \alpha _{t+1}( {\tilde{\theta }}_{t+1} )) +\xi _{t+1}({\tilde{\theta }}_{t+1})\big ]+\rho (t+1) \\&\qquad + \delta ^{t}\big [ \phi _{t}({\tilde{\theta }}_{t}) -\xi _{t}({\tilde{\theta }}_{t}) \big ]\Big ] - \rho (t) \Big ] + \delta \big [u_{1,1}({\tilde{\theta }}_{1},\alpha _{1}({\tilde{\theta }}_{1}))+\xi _{1}({\tilde{\theta }}_{1})] +\rho (1) \Bigg ]\\&\quad = {\mathbb {E}}^{\varXi _{\alpha }}\Big [ \sum _{s=1}^{\tau -1} L^{\alpha , \phi , \xi , \rho }_{s}({\tilde{\theta }}_{s}) -\rho (s)\Big ] + J^{\alpha , \phi , \xi , \rho }_{1}(1). \end{aligned} \end{aligned}$$

\(\square \)

Proof of Lemma 5

Let \({\hat{\sigma }}[t]\) be the one-shot deviation strategy that reports \({\hat{\theta }}_{t}\) for the true state \(\theta _{t}\) at t. Let \(\varOmega ^{*}[{\hat{\sigma }}[t]]\) be the optimal stopping time rule defined in (14) with the stopping region \(\varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t])\) given in (13) (equivalently, (32)). Suppose that at period t the agent observes a state \(\theta _{t}\in \varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t])\). Hence, the agent stops at t optimally. Then, we obtain, for every \(\theta '_{t}\le \theta _{t}\),

$$\begin{aligned} \rho (t) \ge {\bar{\mu }}^{\alpha , \phi , \xi , \rho }_{t}(\theta _{t}, {\hat{\theta }}_{t}) \ge {\bar{\mu }}^{\alpha , \phi , \xi , \rho }_{t}(\theta '_{t},{\hat{\theta }}_{t}), \end{aligned}$$

where the inequality is due to Lemma 4. Therefore, \(\theta '_{t}\in \varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t])\) for every \(\theta '_{t}\le \theta _{t}\), which implies that \(\varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t])\) is an interval left-bounded by \({\underline{\theta }}_{t}\). Since \(L^{\alpha , \phi , \xi , \rho }_{t}\) is continuous, \(\varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t])\) is closed. Hence, according to Assumption 3, there exists some \(\eta (t)\in \varTheta _{t}\) such that \(\varLambda ^{\alpha , \phi , \xi , \rho }_{1,t}(t;{\hat{\sigma }}[t]) = [{\underline{\theta }}_{t}, \eta (t)]\). \(\square \)

Proof of Lemma 6

Let \(\varOmega [{\hat{\sigma }}[t]]|\eta \) and \(\varOmega [{\hat{\sigma }}[t]]|\eta '\) denote the optimal stopping rule with threshold functions \(\eta \) and \(\eta '\), respectively. Let \(\tau _{\eta }\) and \(\tau _{\eta '}\) denote the expected realized stopping time from \(\varOmega [{\hat{\sigma }}[t]]|\eta \) and \(\varOmega [{\hat{\sigma }}[t]]|\eta '\), respectively. Without loss of generality, suppose \(\eta (t)<\eta '(t)\) for some \(t\in {\mathbb {T}}\). Here, we obtain the probability of \(\tau _{\eta }=t\) as:

$$\begin{aligned} \begin{aligned} P_{r}(\tau _{\eta }=t) = P_{r}(\theta _{t}\le \eta (t), \tau _{\eta }>t-1) =&{\mathbb {E}}^{\varXi _{\alpha }}\Bigg [{\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{{\tilde{\theta }}_{t}\le \eta (t)\}} \Big ] {\mathbf {1}}_{\{\tau _{\eta }>t-1\}} \Bigg ]. \end{aligned} \end{aligned}$$

We can obtain \(P_{r}(\tau _{\eta '}=t)\) in a similar way. Then,

$$\begin{aligned} \begin{aligned} P_{r}(\tau _{\eta '}=t)-P_{r}(\tau _{\eta }=t)&= {\mathbb {E}}^{\varXi _{\alpha }}\Bigg [{\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{{\tilde{\theta }}_{t}\le \eta '(t)\}} \Big ] {\mathbf {1}}_{\{\tau _{\eta '}>t-1\}} \Bigg ]\\&\quad -{\mathbb {E}}^{\varXi _{\alpha }}\Bigg [{\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{{\tilde{\theta }}_{t}\le \eta (t)\}} \Big ] {\mathbf {1}}_{\{\tau _{\eta }>t-1\}} \Bigg ]\\&= {\mathbb {E}}^{\varXi _{\alpha }}\Bigg [ {\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{\eta (t)\le {\tilde{\theta }}_{t} \le \eta '(t) \} } \Big ] {\mathbf {1}}_{\tau _{\eta }>t-1} \Bigg ]. \end{aligned} \end{aligned}$$
(91)

Since \(\tau _{\eta }=\tau _{\eta '}\), the probabilities \(P_{r}(\tau _{\eta '}=t)\) and \(P_{r}(\tau _{\eta }=t)\) are equal, i.e., (91) equals 0. However, from Assumption 3, we know \({\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{\eta (t)\le {\tilde{\theta }}_{t} \le \eta '(t) \} } \Big ]>0\) and \(P_{r}(\tau _{\eta }>t-1)>0\), which implies that

$$\begin{aligned} {\mathbb {E}}^{\varXi _{\alpha }}\Bigg [ {\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [{\mathbf {1}}_{\{\eta (t)\le {\tilde{\theta }}_{t} \le \eta '(t) \} } \Big ] {\mathbf {1}}_{\tau _{\eta }>t-1} \Bigg ]>0. \end{aligned}$$

This contradiction implies that \(\eta \) is unique. \(\square \)

Proof of Proposition 2

From the construction of \(\xi \) in (39), we have

$$\begin{aligned} \begin{aligned} \xi _{t}({\hat{\theta }}_{t}) - \xi _{t}(\theta _{t})&= \delta ^{-t}\beta ^{\alpha }_{S,t}({\hat{\theta }}_{t}) -\delta ^{-t}\beta ^{\alpha }_{S,t}(\theta _{t}) + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}))\\&= \delta ^{-t}\beta ^{\alpha }_{S,t}({\hat{\theta }}_{t}) -\delta ^{-t}\beta ^{\alpha }_{S,t}(\theta _{t}) -(u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}))- u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t})))\\&\quad + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t}))). \end{aligned} \end{aligned}$$
(92)

From the definition of \(\ell ^{\alpha }_{S,t}\) in (36) and the condition (41),

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (92) }&=\delta ^{-t}\beta ^{\alpha }_{S,t}({\hat{\theta }}_{t}) -\delta ^{-t}\beta ^{\alpha }_{S,t}(\theta _{t}) + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) -\ell ^{\alpha }_{S,t}({\hat{\theta }}_{t}, \theta _{t}) \\&\quad + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t})))\\&\le u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t}))), \end{aligned} \end{aligned}$$

which implies

$$\begin{aligned} u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) +\xi _{t}(\theta _{t}) \ge u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t}))) + \xi _{t}({\hat{\theta }}_{t}), \end{aligned}$$
(93)

i.e.,

$$\begin{aligned} U^{\alpha ,\phi ,\xi ,\rho }_{S, t}(\theta _{t}|h^{\theta }_{t-1})\ge U^{\alpha ,\phi ,\xi ,\rho }_{S, t}(\theta _{t},{\hat{\theta }}_{t}|h^{\theta }_{t-1}). \end{aligned}$$

From the construction of \(\phi \) in (38), we have, for any \(\tau \in {\mathbb {T}}_{t+1}\),

$$\begin{aligned} \begin{aligned} \phi _{t}({\hat{\theta }}_{t}) - \phi _{t}(\theta _{t})&= \beta ^{\alpha }_{{\bar{S}},t}({\hat{\theta }}_{t}) - {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [\beta _{{\bar{S}},t+1}({\tilde{\theta }}_{t+1})\Big ] - u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}))\\&\quad -\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t}) + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\beta _{{\bar{S}},t+1}({\tilde{\theta }}_{t+1})\Big ] + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t}))\\&= \beta ^{\alpha }_{{\bar{S}},t}({\hat{\theta }}_{t}) - \beta ^{\alpha }_{{\bar{S}},t}(\theta _{t}) + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{T}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{T-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{T}({\tilde{\theta }}_{T})\Big ]\\&\quad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau -1}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau }({\tilde{\theta }}_{\tau }) \Big ]. \end{aligned}\nonumber \\ \end{aligned}$$
(94)

From the condition (42), we have

$$\begin{aligned} \begin{aligned} \text {R.H.S. of 94}&\le \inf _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ]\\&\quad -{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] \Big \}-\sup _{\tau \in {\mathbb {T}}_{t}}\rho (\tau )\\&\quad + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{T}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{T-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{T}\xi _{T}({\tilde{\theta }}_{T})\Big ]\\&\quad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau -1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau }({\tilde{\theta }}_{\tau }) \Big ]. \end{aligned}\nonumber \\ \end{aligned}$$
(95)

From the condition (43), \(\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t})\ge \beta ^{\alpha }_{S,t}(\theta _{t})\), for all \(\theta _{t}\in \varTheta _{t}\), \(t\in {\mathbb {T}}\). Hence, \(\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t})\ge \xi _{t}(\theta _{t})\) \(+ u_{1,t}(\theta _{t},\alpha _{t}(\theta _{t}))\), for all \(\theta _{t}\in {\mathbb {T}}\), \(t\in {\mathbb {T}}\). Then,

$$\begin{aligned} \begin{aligned}&\inf _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ]\\&\qquad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau -1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau }({\tilde{\theta }}_{\tau }) \Big ]\Big \}\\&\quad \le \inf _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ]\\&\qquad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ]\Big \}\\&\quad = 0. \end{aligned} \end{aligned}$$
(96)

Hence, from (96), we have

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (95) }&\le {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{T}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{T-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{T}\xi _{T}({\tilde{\theta }}_{T})\Big ]\\&\quad +\inf _{\tau \in {\mathbb {T}}_{t}}\Big \{-{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] \Big \} \\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\rho (\tau ). \end{aligned}\nonumber \\ \end{aligned}$$
(97)

From the construction of \(\rho \) in (40) and Lemma 2, we have, for some \(\tau '\in {\mathbb {T}}_{t}\)

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (97)}&\le {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau '}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau '-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau '}\xi _{\tau '}({\tilde{\theta }}_{\tau '}) +\rho (\tau ')\Big ]\\&\quad +\inf _{\tau \in {\mathbb {T}}_{t}}\Big \{-{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] \Big \}\\&\quad +\inf _{\tau \in {\mathbb {T}}_{t}}\Big \{-\rho (\tau )\Big \}, \end{aligned}\nonumber \\ \end{aligned}$$
(98)

which can be further bounded as

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (98)}&\le \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\Big \}\\&\quad +\inf _{\tau \in {\mathbb {T}}_{t}}\Big \{-{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ] \Big \}\\&= \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\Big \}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ] \Big \}. \end{aligned} \end{aligned}$$

Hence, from the definition of \(U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}\), we have

$$\begin{aligned} U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}(\theta _{t}|h^{\theta }_{t-1})\ge U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}(\theta _{t}, {\hat{\theta }}_{t}|h^{\theta }_{t-1}). \end{aligned}$$

Therefore, we can conclude that the mechanism is DIC. \(\square \)

Proof of Lemma 7

Let \({\tilde{m}}_{t}\) be uniformly distributed over (0, 1). Given the kernel \(K_{t}\), define the inverse of \(F_{t}(\cdot |\theta _{t-1}, a_{t-1})\) as follows:

$$\begin{aligned} \begin{aligned} F^{-1}_{t}(m_{t}|\theta _{t-1}, a_{t-1})= \inf \{\theta _{t}\in \varTheta _{t}: F_{t}(\theta _{t}|\theta _{t-1}, a_{t-1})\ge m_{t}\}. \end{aligned} \end{aligned}$$

Let \(\theta _{t}\in \varTheta _{t}\) and \(\theta _{t+1}\in \varTheta _{t+1}\) be any two realized states at two adjacent periods, for any \(t\in {\mathbb {T}}\backslash \{T\}\). Then, we have

$$\begin{aligned} \begin{aligned} \frac{\partial \theta _{t+1}}{\partial r}\Big |_{r= \theta _{t}} =&\frac{\partial F^{-1}_{t+1}(m_{t+1}|r, a_{t}) }{\partial r }\Big |_{r=\theta _{t}}= \frac{-\partial F_{t+1}(\theta _{t+1}| r, a_{t})}{f_{t+1}(\theta _{t+1}|\theta _{t}, a_{t}) \partial r}\Big |_{r=\theta _{t}}. \end{aligned} \end{aligned}$$

Then, for any sequence of realized states \(\{\theta _{t},\theta _{t+1},\dots , \theta _{t+k}\}\), for some \(k>1\), we have

$$\begin{aligned} \begin{aligned} \frac{\partial \theta _{t+k}}{\partial r}\Big |_{r= \theta _{t}} =&\prod _{s=t+1}^{t+k}\frac{\partial F^{-1}_{s}(m_{s}|r, a_{s-1}) }{\partial r }\Big |_{r=\theta _{s-1}}= \prod _{s=t+1}^{t+k}\Big [\frac{-\partial F_{s}(\theta _{s}| r, a_{s-1})}{f_{s}(\theta _{s}|\theta _{s-1}, a_{s-1}) \partial r}\Big |_{r=\theta _{s-1}}\Big ]. \end{aligned} \end{aligned}$$

In any DIC mechanism, truthful reporting strategy is optimal. Then, the envelope theorem yields the following:

$$\begin{aligned} \begin{aligned} \frac{\partial U^{\alpha ,\phi ,\xi ,\rho }_{t}(\tau , r|h^{\theta }_{t-1})}{\partial r}\Big |_{r= \theta _{t}} =&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s}))}{\partial r }\Big |_{r={\tilde{\theta }}_{s}} \cdot \frac{\partial {\tilde{\theta }}_{s}}{ \partial l }\Big |_{l=\theta _{t}}\Big ]\\ =&{\mathbb {E}}^{\alpha |\theta _{t}}\Bigg [\sum _{s=t}^{\tau }\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s}))}{\partial r }\Big |_{r={\tilde{\theta }}_{s}} \cdot \prod _{k=t+1}^{s}\Big [\frac{-\partial F_{k}(\theta _{k}| r, a_{k-1})}{f_{k}(\theta _{k}|\theta _{k-1}, a_{k-1}) \partial r}\Big |_{r=\theta _{k-1}}\Big ]\Bigg ]\\ =&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s}))}{\partial r }\Big |_{r={\tilde{\theta }}_{s}} \cdot G_{t,s}(h^{\theta }_{t,s})\Big ]. \end{aligned} \end{aligned}$$

\(\square \)

Proof of Proposition 3

Since \(u_{1,t}(\theta _{t}, a_{t})\) is a non-decreasing function of \(\theta _{t}\), then \( \frac{\partial u_{1,t}(r, a_{t})}{\partial r}\Big |_{r = \theta _{t}} \ge 0 \) , for all \(t\in {\mathbb {T}}\). From Assumption 4, we have \(\frac{\partial F_{t+1}(\theta _{t+1}|r, a^{t})}{\partial r}\Big |_{r=\theta _{t}} \le 0\). Therefore, from Lemma 46, the term \(\gamma ^{\alpha }_{t}(\tau , \theta _{t}|h^{\theta }_{t-1})\) is nonnegative.

From the definition of \(\chi ^{\alpha , \phi , \xi }_{1,t}(\theta _{t})\) in (7), we have

$$\begin{aligned} \begin{aligned} \chi ^{\alpha , \phi , \xi }_{1,t}(\theta _{t})&= Z^{\alpha , \phi , \xi }_{1,t}(t+1, \theta _{t}|h^{\theta }_{t-1}) - Z^{\alpha , \phi , \xi }_{1,t}(t, \theta _{t}|h^{\theta }_{t-1})\\&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{t+1}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s})) + \delta ^{t+1}\xi _{t+1}({\tilde{\theta }}_{t+1}) + \delta ^{t}\phi _{t}(\theta _{t})\Big ] - [\delta ^{t}u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t}))+ \delta ^{t}\xi _{t}(\theta _{t})]. \end{aligned} \end{aligned}$$

Substituting the constructions of \(\phi \) and \(\xi \) given by (38) and (39), respectively, yields

$$\begin{aligned} \begin{aligned} \chi ^{\alpha , \phi , \xi }_{1,t}(\theta _{t}) =&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\beta _{{\bar{S}},t}(\theta _{t}) -\beta _{{\bar{S}},t+1}({\tilde{\theta }}_{t+1}) \Big ] + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\beta _{S,t+1}({\tilde{\theta }}_{t+1}) - \beta _{S,t}(\theta _{t}) \Big ]. \end{aligned} \end{aligned}$$
(99)

Given the formulations of \(\beta _{S,t}\) and \(\beta _{{\bar{S}},t}\) in (47) and (48), respectively, we have

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (99) }&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\int ^{\theta _{t}}_{\theta _{\epsilon ,t}} \gamma ^{\alpha }_{t}(\tau , r|h^{\theta }_{t-1})dr\Big \} -\sup _{\tau \in {\mathbb {T}}_{t+1}}\Big \{\int ^{{\tilde{\theta }}_{t+1} }_{\theta _{\epsilon ,t+1}} \gamma ^{\alpha }_{t+1}(\tau , r|h^{\theta }_{t})dr\Big \} \Big ] \\&\quad + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\int ^{{\tilde{\theta }}_{t+1}}_{\theta _{\epsilon ,t+1}} \gamma ^{\alpha }_{t+1}(t+1, r|h^{\theta }_{t})dr - \int ^{\theta _{t}}_{\theta _{\epsilon ,t}} \gamma ^{\alpha }_{t}(t, r|h^{\theta }_{t-1})dr\Big ]. \end{aligned} \end{aligned}$$
(100)

Since \(\gamma ^{\alpha }_{t}\) is nonnegative for all \(t\in {\mathbb {T}}\), then

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (100) }&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\int ^{\theta _{t}}_{\theta _{\epsilon ,t}} \gamma ^{\alpha }_{t}(T, r|h^{\theta }_{t-1})dr -\int ^{{\tilde{\theta }}_{t+1} }_{\theta _{\epsilon ,t+1}} \gamma ^{\alpha }_{t+1}(T, r|h^{\theta }_{t})dr \Big ]\\&\quad +{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\int ^{{\tilde{\theta }}_{t+1}}_{\theta _{\epsilon ,t+1}} \gamma ^{\alpha }_{t+1}(t+1, r|h^{\theta }_{t})dr - \int ^{\theta _{t}}_{\theta _{\epsilon ,t}} \gamma ^{\alpha }_{t}(t, r|h^{\theta }_{t-1})dr\Big ]. \end{aligned} \end{aligned}$$
(101)

Taking partial derivative of \(\chi ^{\alpha , \phi ,\zeta }_{1,t}\) given in (101) with respect to \(\theta _{t}\) gives

$$\begin{aligned} \begin{aligned} \frac{\partial \chi ^{\alpha , \phi , \xi }_{1,t}(r) }{\partial r}\Big |_{r=\theta _{t}}&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \gamma ^{\alpha }_{t}(T,\theta _{t}|h^{\theta }_{t-1}) - \gamma ^{\alpha }_{t+1}(T, {\tilde{\theta }}_{t+1}|h^{\theta }_{t})G_{t,t+1}({\tilde{\theta }}_{t+1}) \Big ] \\&\quad + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\gamma ^{\alpha }_{t+1}(t+1, {\tilde{\theta }}_{t+1}|h^{\theta }_{t})G_{t,t+1}({\tilde{\theta }}_{t+1}) - \gamma ^{\alpha }_{t}(t, \theta _{t}|h^{\theta }_{t-1}) \Big ]. \end{aligned} \end{aligned}$$

From Lemma 7, we have

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \gamma ^{\alpha }_{t}(T,\theta _{t}|h^{\theta }_{t-1})drx - \gamma ^{\alpha }_{t}(t, \theta _{t}|h^{\theta }_{t-1}) \Big ]\\&\quad = \max \Big \{ {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t+1}^{T} \delta ^{s}\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s})) }{\partial r }\Big |_{r={\tilde{\theta }}_{s}} G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ], \;\; 0 \Big \}\\&\quad = {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t+1}^{T} \delta ^{s}\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s})) }{\partial r }\Big |_{r={\tilde{\theta }}_{s}} G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ], \end{aligned} \end{aligned}$$

where the second equality is from the fact that \(\gamma ^{\alpha }_{t}\) is nonnegative; and

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \gamma ^{\alpha }_{t+1}(T, {\tilde{\theta }}_{t+1}|h^{\theta }_{t}) G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ]&={\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t+1}^{T} \delta ^{s}\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s})) }{\partial r }\Big |_{r={\tilde{\theta }}_{s}} G_{t+1,s}(h^{{\tilde{\theta }}}_{t+1,s})G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ]\\&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t+1}^{T} \delta ^{s}\frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s})) }{\partial r }\Big |_{r={\tilde{\theta }}_{s}} G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ]. \end{aligned} \end{aligned}$$

Also, Assumption 4 implies that \(G_{t,t+1}(\theta _{t+1})\ge 0\) for all \(\theta _{t+1}\in \varTheta _{t+1}\). Hence, we have

$$\begin{aligned} \begin{aligned} \frac{\partial \chi ^{\alpha , \phi , \xi }_{1,t}(r) }{\partial r}\Big |_{r=\theta _{t}} =&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\gamma ^{\alpha }_{t+1}(t+1, {\tilde{\theta }}_{t+1}|h^{\theta }_{t})G_{t,t+1}({\tilde{\theta }}_{t+1}) \Big ] \ge 0. \end{aligned} \end{aligned}$$

Therefore, the constructions of potential functions given in (47) and (48) satisfy the monotonicity condition specified by Assumption 2, i.e., the statement (iii) in Proposition 2 is satisfied. \(\square \)

Proof of Proposition 5

Fix an arbitrary \({\hat{\theta }}_{\epsilon ,t}\in \varTheta _{\epsilon }\). We discuss the following two cases:

1.1 1. \(\varvec{\theta _{t}\in \varLambda _{t}(t)}:\)

Let \({\hat{\theta }}_{t} \in \varLambda _{t}(t)\). Without loss of generality, suppose \({\hat{\theta }}_{t}\le \theta _{t}\). Let \(\theta \), \(\theta ^{1}\), \(\theta ^{2}\in \bar{\varTheta }_{t} \equiv [\hat{\theta }_{t}, \theta _{t}]\). Since the mechanism is DIC, there exists \(\xi \) such that

$$\begin{aligned} \delta ^{t}\big [ u_{1,t}(\theta _{t }, \alpha _{t}(\theta _{t})) + \xi _{t}(\theta _{t})\big ] +\rho (t) \ge \delta ^{t}\big [ u_{1,t}(\theta _{t }, \alpha _{t}(\hat{\theta }_{t})) + \xi _{t}(\hat{\theta }_{t})\big ]+\rho (t). \end{aligned}$$
(102)

Define

$$\begin{aligned} B_{t}(\theta ) \equiv \max _{x\in \bar{\varTheta }_{t} }\delta ^{t}\Big [ u_{1,t}(\theta , \alpha _{t}(x)) +\xi _{t}(x) \Big ]. \end{aligned}$$
(103)

DIC implies that

$$\begin{aligned} \theta \in \mathop {\mathrm{{argmax}}}\limits _{x\in \bar{\varTheta }_{t}}\delta ^{t}\Big [ u_{1,t}(\theta , \alpha _{t}(x)) +\xi _{t}(x) \Big ]. \end{aligned}$$

Then, we obtain

$$\begin{aligned} \begin{aligned} |B_{t}(\theta ^{2})- B_{t}(\theta ^{1}) |&\le \max _{x\in \bar{\varTheta }_{t}} \delta ^{t}\big | u_{1,t}( \theta ^{2}, \alpha _{t}(x)) - u_{1,t}( \theta ^{1}, \alpha _{t}(x)) \big |\\&=\max _{x\in \bar{\varTheta }_{t}}\delta ^{t}\Big |\int _{\theta ^{1}}^{\theta ^{2}} \frac{\partial u_{1,t}(y, \alpha _{t}(x)) }{ \partial y } \big |_{y = \theta } d \theta \Big |\\&= \max _{x\in \bar{\varTheta }_{t}}\delta ^{t}\Big |\beta ^{\alpha }_{S,t}(\theta ^{2}) - \beta ^{\alpha }_{S,t}(\theta ^{1}) \Big |. \end{aligned} \end{aligned}$$

By Assumption 1, we have that \(B_{t}\) is Lipschitz continuous. Thus, \(B_{t}\) is differentiable almost everywhere. Therefore, we have

$$\begin{aligned} B_{t}(\theta _{t}) - B_{t}(\hat{\theta }_{t}) = \int ^{\theta _{t}}_{{\hat{\theta }}_{t}} \frac{d B_{t}(y)}{d y} \big |_{y = \theta } d\theta . \end{aligned}$$

Applying envelope theorem to \(B_{t}\) yields

$$\begin{aligned} \begin{aligned} \frac{d B_{t}(y)}{d y} \big |_{y = \theta } =&\frac{\partial }{\partial x }\big [ \delta ^{t} u_{1,t}(x, \alpha _{t}(\theta )) + \xi _{t}(\theta ) \big ] \Big |_{x= \theta }\\ =&\frac{\partial }{\partial x } \delta ^{t} u_{1,t}(x, \alpha _{t}(\theta ) )\Big |_{x= \theta }\\ =&\gamma ^{\alpha }_{t} (t, \theta |h^{\theta }_{t-1}). \end{aligned} \end{aligned}$$

Therefore, we have

$$\begin{aligned} \begin{aligned} \beta ^{\alpha }_{S,t}(\theta _{t}) - \beta ^{\alpha }_{S,t}({\hat{\theta }}_{t}) =&B_{t}(\theta _{t}) - B_{t}(\hat{\theta }_{t}) \\ =&\delta ^{t}\big [ u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) + \xi _{t}(\theta _{t})\big ] - \delta ^{t}\big [u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t})) + \xi _{t}({\hat{\theta }}_{t})\big ] \end{aligned} \end{aligned}$$

From the definition of \(\ell ^{\alpha }_{S,t}(\theta _{t},{\hat{\theta }}_{t})\), we have

$$\begin{aligned} \begin{aligned} \ell ^{\alpha }_{S,t}(\theta _{t}, \hat{\theta }_{t}) =&\delta ^{t}u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - \delta ^{t} u_{1,t}(\hat{\theta }_{t}, \alpha _{t}(\theta _{t}))\\ =&\delta ^{t}u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - \delta ^{t} u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}) ) +\delta ^{t} u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}) ) - \delta ^{t} u_{1,t}(\hat{\theta }_{t}, \alpha _{t}(\theta _{t})) \\ \ge&\delta ^{t}\big [u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t})) - u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}) ) + \xi _{t}(\theta _{t}) - \xi _{t}(\hat{\theta }_{t})\big ]\\ =&\beta ^{\alpha }_{S,t}(\theta _{t}) - \beta ^{\alpha }_{S,t}({\hat{\theta }}_{t}). \end{aligned} \end{aligned}$$

1.2 2. \(\theta _{t}\not \in \varLambda _{t}(t):\)

Similar to the case when \(\theta _{t}\in \varLambda _{t}(t)\), DIC implies the existence of \(\phi \) and \(\xi _{s}\) such that

$$\begin{aligned} \begin{aligned}&\delta ^{t}\big [ u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t}))+ \xi _{t}(\theta _{t}) \big ]+{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}(\theta _{t}) \\&\quad \ge \delta ^{t}\big [ u_{1,t}(\theta _{t}, \alpha _{t}({\hat{\theta }}_{t}))+ \xi _{t}({\hat{\theta }}_{t}) \big ]+{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}(\theta _{t}, {\hat{\theta }}_{t}). \end{aligned} \end{aligned}$$

Define

$$\begin{aligned} B'_{t}(\theta ) \equiv \max _{x\in \bar{\varTheta }_{t} }\Big [ \delta ^{t}\big [ u_{1,t}(\theta , \alpha _{t}(x)) + \xi _{t}(x)\big ]+{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}(\theta , x) \Big ]. \end{aligned}$$
(104)

Since the mechanism is DIC, we have

$$\begin{aligned} \theta \in \mathop {{\mathrm{argmax}}}\limits _{x\in \bar{\varTheta }_{t}} \Big [ \delta ^{t}\big [ u_{1,t}(\theta , \alpha _{t}(x)) + \xi _{t}(x)\big ]+{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}(\theta , x) \Big ]. \end{aligned}$$

Envelope theorem yields the following:

$$\begin{aligned} \begin{aligned} \beta ^{\alpha }_{{\bar{S}},t}(\hat{\theta }_{t})-\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t})&= B'_{t}(\hat{\theta }_{t})-B'_{t}(\theta _{t})\\&= \delta ^{t}\big [ u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}))+\xi _{t}({\hat{\theta }}_{t}) \big ]+{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}({\hat{\theta }}_{t})\\&\quad - \delta ^{t}\big [ u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t}))+ \xi _{t}(\theta _{t}) \big ]-{\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}(\theta _{t}). \end{aligned} \end{aligned}$$
(105)

From the definition of \({\bar{\mu }}^{\alpha ,\phi , \xi ,\rho }_{t}\), (105) can be extended as follows:

$$\begin{aligned} \begin{aligned}&\beta ^{\alpha }_{{\bar{S}},t}(\hat{\theta }_{t})-\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t}) \\&\quad = \sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s})) +\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \}\\&\qquad - \sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))+\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \} \\&\qquad + \phi _{t}({\hat{\theta }}_{t}) -\phi _{t}(\theta _{t}). \end{aligned} \end{aligned}$$
(106)

Since the mechanism is DIC, we have

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (106) }&\le \sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s})) +\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \}\\&\quad - \sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))+\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \} \\&\quad + \sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))+\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \} \\&\quad -\sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))+\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \}, \end{aligned} \end{aligned}$$

which is equal to

$$\begin{aligned} \begin{aligned}&\sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s})) +\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \}\\&\qquad -\sup _{\tau \in {\mathbb {T}}_{t+1}}\Bigg \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))+\sum _{s=t+1}^{\tau -1} \phi _{s}({\tilde{\theta }}_{s}) +\xi _{\tau }({\tilde{\theta }}_{\tau }) \big ] +\rho (\tau )\Big ] \Bigg \} \\&\quad = \sup _{\tau \in {\mathbb {T}}_{t+1}}\Big \{\pi ^{\alpha }_{t}({\hat{\theta }}_{t}) \Big \} - \sup _{\tau \in {\mathbb {T}}_{t+1}}\Big \{\pi ^{\alpha }_{t}(\theta _{t},{\hat{\theta }}_{t}) \Big \}. \end{aligned} \end{aligned}$$

Hence, the condition (55) is satisfied. \(\square \)

Proof of Proposition 4

Let \(\theta ^{a}_{\epsilon ,t}\), \(\theta ^{b}_{\epsilon ,t}\in \varTheta \) associate with \(\beta ^{\alpha ;a}_{{\bar{S}}, t}\) and \(\beta ^{\alpha ;b}_{{\bar{S}}, t}\), respectively. For any period \(t\in {\mathbb {T}}\backslash \{1\}\), time horizon \(\tau \in {\mathbb {T}}\),

$$\begin{aligned} \begin{aligned}&J{}^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t}(\tau ,\theta _{t}|h^{\theta }_{t-1}) - J^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t-1}(\tau ,\theta _{t-1}|h^{\theta }_{t-2}) \\&\quad = J^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t}(\tau ,\theta _{t}|h^{\theta }_{t-1}) - {\mathbb {E}}^{F_{t}(\theta _{t-1},a_{t-1})}\Big [J^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t-1} (\tau , {\tilde{\theta }}_{t}|h^{\theta }_{t-2}) \Big ]\\&\quad = {\mathbb {E}}^{F_{t}(\theta _{t-1},a_{t-1})}\Big [ J^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t}(\tau ,\theta _{t}|h^{\theta }_{t-1}) - J^{\alpha ,\phi ^{a},\xi ,\rho }_{1,t-1} (\tau , {\tilde{\theta }}_{t}|h^{\theta }_{t-1}) \Big ]\\&\quad = {\mathbb {E}}^{F_{t}(\theta _{t-1},a_{t-1})}\Big [ \int ^{\theta _{t}}_{\theta ^{a}_{\epsilon ,t}} \gamma ^{\alpha }_{t-1}(\tau ,r|h^{\theta }_{t-2})dr - \int ^{{\tilde{\theta }}_{t}}_{\theta ^{a}_{\epsilon ,t}} \gamma ^{\alpha }_{t-1}(\tau ,r|h^{\theta }_{t-2})dr \Big ]\\&\quad = {\mathbb {E}}^{F_{t}(\theta _{t-1},a_{t-1})}\Big [ \int ^{\theta _{t}}_{{\tilde{\theta }}_{t}} \gamma ^{\alpha }_{t-1}(\tau ,r|h^{\theta }_{t-2})dr \Big ]\\&\quad = {\mathbb {E}}^{F_{t}(\theta _{t-1},a_{t-1})}\Big [ \int ^{\theta _{t}}_{\theta ^{b}_{\epsilon ,t}} \gamma ^{\alpha }_{t-1}(\tau ,r|h^{\theta }_{t-2})dr - \int ^{{\tilde{\theta }}_{t}}_{\theta ^{b}_{\epsilon ,t}} \gamma ^{\alpha }_{t-1}(\tau ,r|h^{\theta }_{t-2})dr \Big ]\\&\quad = J^{\alpha ,\phi ^{b},\xi ,\rho }_{1,t}(\tau ,\theta _{t}|h^{\theta }_{t-1}) - J^{\alpha ,\phi ^{b},\xi ,\rho }_{1,t-1}(\tau ,\theta _{t-1}|h^{\theta }_{t-2}). \end{aligned} \end{aligned}$$

Hence, we have

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=1}^{\tau -1}\delta ^{s}\phi ^{a}_{s}({\tilde{\theta }}_{s})+ \delta ^{\tau }\xi ^{a}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{a}(\tau ) \Big ] - {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=1}^{\tau -1}\delta ^{s}\phi ^{b}_{s}({\tilde{\theta }}_{s}) + \delta ^{\tau }\xi ^{b}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{b}(\tau )\Big ]\\&\quad = {\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [\sum _{s=1}^{\tau -1}\delta ^{s}\phi ^{a}_{s}({\tilde{\theta }}_{s})+ \delta ^{\tau }\xi ^{a}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{a}(\tau ) \Big ] - {\mathbb {E}}^{\alpha |\theta _{t-1}}\Big [\sum _{s=1}^{\tau -1}\delta ^{s}\phi ^{b}_{s}({\tilde{\theta }}_{s}) + \delta ^{\tau }\xi ^{b}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{b}(\tau )\Big ]. \end{aligned}\nonumber \\ \end{aligned}$$
(107)

Induction gives the following

$$\begin{aligned}&{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=1}^{\tau }\delta ^{s}\phi ^{a}_{s}({\tilde{\theta }}_{s})+ \delta ^{\tau }\xi ^{a}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{a}(\tau ) \Big ] - {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=1}^{\tau }\delta ^{s}\phi ^{b}_{s}({\tilde{\theta }}_{s}) + \delta ^{\tau }\xi ^{b}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{b}(\tau )\Big ]\nonumber \\&\quad = {\mathbb {E}}^{\varXi _{\alpha }}\Big [\sum _{s=1}^{\tau }\delta ^{s}\phi ^{a}_{s}({\tilde{\theta }}_{s})+ \delta ^{\tau }\xi ^{a}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{a}(\tau ) \Big ] - {\mathbb {E}}^{\varXi _{\alpha }}\Big [\sum _{s=1}^{\tau }\delta ^{s}\phi ^{b}_{s}({\tilde{\theta }}_{s}) + \delta ^{\tau }\xi ^{b}_{\tau }({\tilde{\theta }}_{\tau }) +\rho ^{b}(\tau )\Big ]\nonumber \\&\quad =C_{\tau }. \end{aligned}$$
(108)

\(\square \)

Proof of Lemma 8

It is straightforward to see that

$$\begin{aligned} \begin{aligned} \frac{ \partial J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(\tau ,r|h^{\theta }_{t-1}) }{ \partial r } \Big |_{r= \theta _{t}}&=\frac{ \partial U^{\alpha ,\phi ,\xi ,\rho }_{t}(\tau ,r|h^{\theta }_{t-1}) }{\partial r }\Big |_{r=\theta _{t}}\\&= {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{\tau } \frac{\partial u_{1,s}(r, \alpha _{s}({\tilde{\theta }}_{s})) }{\partial r }\Big |_{r={\tilde{\theta }}_{s}} G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \Big ]. \end{aligned} \end{aligned}$$

From Assumption 4, we have \(G_{t,s}(h^{{\tilde{\theta }}}_{t,s}) \ge 0\). Since \(u_{1,t}\) is a non-decreasing function of \(\theta _{t}\), \(\frac{ \partial J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(\tau ,r|h^{\theta }_{t-1}) }{ \partial r }\) \(\Big |_{r= \theta _{t}}\ge 0\). Therefore, \(J^{\alpha ,\phi ,\xi ,\rho }_{1,t}(\tau ,r|h^{\theta }_{t-1})\) is a non-decreasing function of \(\theta _{t}\), for all \(t\in {\mathbb {T}}\). \(\square \)

Proof of Proposition 6

From the construction of \(\phi \) in (38), we have, for any \(\tau ',\tau ''\in {\mathbb {T}}_{t+1}\),

$$\begin{aligned} \begin{aligned} \phi _{t}({\hat{\theta }}_{t}) - \phi _{t}(\theta _{t})&= \beta ^{\alpha }_{{\bar{S}},t}({\hat{\theta }}_{t}) - {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [\beta _{{\bar{S}},t+1}({\tilde{\theta }}_{t+1})\Big ] - u_{1,t}({\hat{\theta }}_{t}, \alpha _{t}({\hat{\theta }}_{t}))\\&\quad -\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t}) + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\beta _{{\bar{S}},t+1}({\tilde{\theta }}_{t+1})\Big ] + u_{1,t}(\theta _{t}, \alpha _{t}(\theta _{t}))\\&= \beta ^{\alpha }_{{\bar{S}},t}({\hat{\theta }}_{t}) - \beta ^{\alpha }_{{\bar{S}},t}(\theta _{t}) + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{\tau ''-1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau ''-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau ''}({\tilde{\theta }}_{\tau ''}) \Big ]\\&\quad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau '-1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau '-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau '}({\tilde{\theta }}_{\tau '}) \Big ]. \end{aligned}\nonumber \\ \end{aligned}$$
(109)

From the definition of \(d^{\alpha }_{{\bar{S}}, t}\) in (64), we have for any \(\tau '\), \(\tau ''\in {\mathbb {T}}_{t}\),

$$\begin{aligned} \begin{aligned}&\text {R.H.S. of (109)} \le \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] +\rho (\tau )\Big \}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] +\rho (\tau ) \Big \}+d^{\alpha }_{{\bar{S}}, t}\\&\quad + {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{\tau ''-1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau ''-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau ''}({\tilde{\theta }}_{\tau ''}) \Big ]\\&\quad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau '-1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau '-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau '}({\tilde{\theta }}_{\tau '}) \Big ]. \end{aligned} \end{aligned}$$
(110)

From the condition (43), \(\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t})\ge \beta ^{\alpha }_{S,t}(\theta _{t})\), for all \(\theta _{t}\in \varTheta _{t}\), \(t\in {\mathbb {T}}\). Hence, \(\beta ^{\alpha }_{{\bar{S}},t}(\theta _{t})\ge \) \( \xi _{t}(\theta _{t}) + \) \( u_{1,t}(\theta _{t},\) \(\alpha _{t}(\theta _{t}))\), for all \(\theta _{t}\in {\mathbb {T}}\), \(t\in {\mathbb {T}}\). Then,

$$\begin{aligned} \begin{aligned}&\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\\&\qquad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau -1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau }({\tilde{\theta }}_{\tau }) \Big ]\Big \}\\&\quad \le \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{ {\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}} \Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\\&\qquad -{\mathbb {E}}^{\alpha |{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ]\Big \}\\&\quad =\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{ \rho (\tau )\Big \}. \end{aligned}\nonumber \\ \end{aligned}$$
(111)

Hence, from (111), we have, for any \(\tau '\in {\mathbb {T}}_{t}\)

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (110) }&\le {\mathbb {E}}^{\alpha |\theta _{t}}\Big [ \sum _{s=t}^{\tau '-1}\delta ^{s}u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau '-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\beta ^{\alpha }_{{\bar{S}},\tau '}({\tilde{\theta }}_{\tau '}) \Big ] + \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho (\tau ) \Big \}+d^{\alpha }_{{\bar{S}}, t}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) \Big ] +\rho (\tau ) \Big \}. \end{aligned}\nonumber \\ \end{aligned}$$
(112)

From the construction of \(\rho \) in (40) and Lemma 2, we have, for some \(\tau '\in {\mathbb {T}}_{t}\)

$$\begin{aligned} \begin{aligned} \text {R.H.S. of (112)}&\le {\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau '}\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau '-1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau '}\xi _{\tau '}({\tilde{\theta }}_{\tau '}) +\rho (\tau ')\Big ]+d^{\alpha }_{{\bar{S}}, t}\\&\quad +\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho (\tau ) \Big \}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ] \Big \}\\&= \sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\Big \}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ] \Big \}\\&\quad +d^{\alpha }_{{\bar{S}}, t}+\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho (\tau ) \Big \}, \end{aligned} \end{aligned}$$

which is equal to

$$\begin{aligned} \begin{aligned}&\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t}}\Big [\sum _{s=t}^{\tau }\delta ^{s} u_{1,s}({\tilde{\theta }}_{s},\alpha _{s}({\tilde{\theta }}_{s}))+ \sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ]\Big \}\\&\quad -\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{{\mathbb {E}}^{\alpha |\theta _{t},{\hat{\theta }}_{t}}\Big [ \sum _{s=t}^{\tau }\delta ^{s}\big [u_{1,s}({\tilde{\theta }}_{s}, \alpha _{s}({\tilde{\theta }}_{s}))\big ] +\sum _{s=t+1}^{\tau -1}\delta ^{s}\phi _{s}({\tilde{\theta }}_{s}) +\delta ^{\tau }\xi _{\tau }({\tilde{\theta }}_{\tau }) +\rho (\tau )\Big ] \Big \}\\&\quad +d^{\alpha }_{{\bar{S}}, t}+\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho (\tau ) \Big \}. \end{aligned} \end{aligned}$$

Hence, from the definition of \(U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}\), we have

$$\begin{aligned} U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}(\theta _{t}|h^{\theta }_{t-1})+d^{\alpha }_{{\bar{S}}, t}+\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho (\tau ) \Big \}\ge U^{\alpha ,\phi ,\xi ,\rho }_{{\bar{S}},t}(\theta _{t}, {\hat{\theta }}_{t}|h^{\theta }_{t-1}). \end{aligned}$$

Following the similar way, we can prove the following

$$\begin{aligned} U_{S,t}^{\alpha ,\phi , \xi , \rho }(\theta _{t}|h^{\theta }_{t-1})+ d^{\alpha }_{S,t}\ge U_{S,t}^{\alpha ,\phi , \xi , \rho }(\theta _{t}, {\hat{\theta }}_{t}|h^{\theta }_{t-1}), \end{aligned}$$

where \(d^{\alpha }_{S,t}\) is defined in (63).

Therefore, we can conclude that the mechanism is \(\Big \{d^{\alpha ^{\circ }}_{S,t}, d^{\alpha ^{\circ }}_{{\bar{S}},t}+\sup _{\tau \in {\mathbb {T}}_{t}}\Big \{\rho ^{\circ }(\tau ) \Big \}\Big \}\)-DIC if \(d^{\alpha }_{S,t}>0\) and \(\Big [d^{\alpha }_{t}+ \sup _{\tau \in {\mathbb {T}}_{t}}\) \(\Big \{\rho (\tau ) \Big \}>0\); otherwise, the mechanism is DIC. We can prove the case when the payment rule \(\rho \) is constructed according to (51) by following the similar way. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zhu, Q. On Incentive Compatibility in Dynamic Mechanism Design With Exit Option in a Markovian Environment. Dyn Games Appl 12, 701–745 (2022). https://doi.org/10.1007/s13235-021-00388-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-021-00388-x

Keywords