Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using dynamic community detection to identify trends in user-generated content

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

In this paper, we present a new solution for trend detection in user-generated content, and more particularly Web 2.0 social networks. Whereas some propositions have been published in this domain recently, we have chosen a new approach based on network analysis. We first create an evolving network of terms, which is an abstraction of the complete network, and then run a dynamic community detection algorithm on this evolving network. In order to be able to detect not only short, bursting events, but also more persistent topics, we test our solution on a social network for which we have information about all published contents for a period of more than 2 years: the Japanese network Nico Nico Douga. After presenting our solution in detail, we present the results on this dataset, notably a statistical analysis of communities’ sizes and durations, examples of detected communities, and a typology of the different kinds of trends detected. Finally, we discuss the advantages and disadvantages of this method, as well as its possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aynaud T, Guillaume JL (2010) Long range community detection. In: Intelligence and Security Informatics, 2007 IEEE

  • Becker H, Naaman M, Gravano L (2011) Beyond trending topics: real-world event identification on Twitter. In: Fifth international AAAI conference on weblogs and social media

  • Benhardus J (2010) Streaming trend detection in twitter. In: National Science Foundation REU for artificial intelligence, NLP and IR

  • Bhattacharyya P, Garg A, Wu S (2011) Analysis of user keyword similarity in online social networks. Soc Netw Anal Min 1:143–158. doi:10.1007/s13278-010-0006-4

  • Capocci A, Servedio V, Caldarelli G, Colaiori F (2004) Communities detection in large networks. In: Leonardi S (ed) Algorithms and models for the web-graph. Lecture notes in computer science. vol 3243. Springer, Berlin, pp 181–187

  • Cazabet R, Amblard F (2011) Simulate to detect: a multi-agent system for community detection. In: IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (WI-IAT), 2011, vol 2, pp 402–408. IEEE, New York

  • Fortunato S (2009) Community detection in graphs. Physics Reports 486(3–5):75–174

    MathSciNet  Google Scholar 

  • Gilbert F, Simonetto P, Zaidi F, Jourdan F, Bourqui R (2010) Communities and hierarchical structures in dynamic social networks: analysis and visualization. Soc Netw Anal Min 1(2):83–95

    Article  Google Scholar 

  • Girvan M, Newman M (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12):7821

    Article  MathSciNet  MATH  Google Scholar 

  • Hamasaki M, Takeda H, Nishimura T (2008) Network analysis of massively collaborative creation of multimedia contents: case study of hatsune miku videos on nico nico douga. In: Proceeding of the 1st international conference on designing interactive user experiences for TV and video. ACM, New York, pp 165–168

  • Kas M, Carley K, Carley L (2011) Trends in science networks: understanding structures and statistics of scientific networks. Soc Netw Anal Min 2(2):169–187

    Article  Google Scholar 

  • Kleinberg J (2003) and hierarchical structure in streams. Data Min Knowl Disc 7(4):373–397

    Article  MathSciNet  Google Scholar 

  • Laniado D, Mika P (2010) Making sense of twitter. In: The Semantic Web—ISWC 2010, pp 470–485

  • Li X, Guo L, Zhao Y (2008) Tag-based social interest discovery. In: Proceeding of the 17th international conference on World Wide Web, pp 675–684. http://dl.acm.org/citation.cfm?id=1367589

  • Mucha P, Richardson T, Macon K, Porter M, Onnela J (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876

    Article  MathSciNet  MATH  Google Scholar 

  • Navarro E, Cazabet R (2011) Détection de communautés, étude comparative sur graphes réels. Int J Interact Intell Inf 11(1):77–93

    Google Scholar 

  • Palla G, Barabási A, Vicsek T (2007) Quantifying social group evolution. Nature 446(7136):664–667

    Article  Google Scholar 

  • Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    Article  Google Scholar 

  • Rosvall M, Bergstrom C (2007) An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci USA 104(18):7327

    Article  Google Scholar 

  • Sankaranarayanan J, Samet H, Teitler B, Lieberman M, Sperling J (2009) Twitterstand: news in tweets. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pp 42–51. http://dl.acm.org/citation.cfm?id=1653781

  • Weng J, Yao Y, Leonardi E, Lee F (2011) Event detection in Twitter. In: Fifth international AAAI conference on weblogs and social media

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Cazabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazabet, R., Takeda, H., Hamasaki, M. et al. Using dynamic community detection to identify trends in user-generated content. Soc. Netw. Anal. Min. 2, 361–371 (2012). https://doi.org/10.1007/s13278-012-0074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13278-012-0074-8

Keywords