Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling and evaluating information propagation in a microblogging social network

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Microblogging platforms, such as Twitter and Plurk, allow users to express feelings, discuss ideas, and share interesting things with their friends or even strangers with similar interests. With the popularity of microblogs, there are growing data and opportunities in understanding information propagation behaviors in online social networks. Though some influence models had been proposed based on certain assumptions, most of them are based on the simulation approach (not data driven). This paper aims at designing a framework to model, measure, evaluate, and visualize influence propagation in a microblogging social network. Considering how information contents are spread in a social network, we devise two influence propagation models from the views of messages posted and responded. Based on the proposed models, we are able to measure the influence capability of an individual with respect to a user-given topic. Our design of influence measures consider (a) the number of people influenced, (b) the speed of propagation, and (c) the geographic distance of the propagation. To test the effectiveness of our influence model, we further propose a novel evaluation framework that predicts the propagation links and influential nodes in a real-world microblogging social network. Finally, we develop an online visualization system allowing users to explore the information propagation with the functions of displaying propagation structures, influence scores of individuals, timelines, and the geographical information for any user-query terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Tumblr: http://www.tumblr.com.

  2. Twitter: http://www.twitter.com.

  3. Plurk: http://www.plurk.com.

  4. Squeelr: http://www.squeelr.com.

  5. Jaiku: http://www.jaiku.com.

  6. Viral Marketing: http://en.wikipedia.org/wiki/Viral_marketing.

  7. Open Flash Chart: http://teethgrinder.co.uk/open-flash-chart/.

  8. Simile widgets: http://www.simile-widgets.org/timeline/.

  9. GraphGear: http://www.creativesynthesis.net/recycling/graphgeardemo/.

References

  • Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role of social networks in information diffusion. In: Proceedings of ACM international conference on world wide web (WWW’12)

  • Cha M, Mislove A, Gummadi KP (2009) A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of ACM international conference on world wide web (WWW’09)

  • Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the 4th international AAAI conference on weblogs and social media (ICWSM’10)

  • Cha M, Perez JAN, Haddadi H (2012) The spread of media content through blogs. J Soc Netw Anal Min (SNAM)

  • Chaoji V, Ranu S, Rastogi R, Bhatt R (2012) Recommendations to boost content spread in social networks. In: Proceedings of ACM international conference on World Wide Web (WWW’12)

  • Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: Proceedings of ACM international conference on web search and data mining (WSDM’10)

  • Goyal A, Bonchi F, Lakshmanan LVS, Venkatasubramanian S (2012) On minimizing budget and time in influence propagation over social networks. J Soc Netw Anal Min (SNAM)

  • Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of ACM international conference on world wide web (WWW’04)

  • Gupte M, Hajiaghayi M, Han L, Iftod L, Shankar P, Ursu RM (2009) News posting by strategic users in a social network. In: Proceedings of international workshop on internet and network economics (WINE’09)

  • Kempe D, Kleinberg JM, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03)

  • Kempe D, Kleinberg J, Tardos E (2005) Influential nodes in a diffusion model for social networks. In: Automata, languages and programming, vol 3580, pp 1127–1138

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London

  • Kimura M, Saito K, Nakano R, Motoda H (2010) Extracting influential nodes on a social network for information diffusion. In: Data Mining and Knowledge Discovery (DMKD), vol 20, pp 70–97

  • Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media. In: Proceedings of ACM international conference on world wide web (WWW’10)

  • Lai HC, Chen CW, Liu PS, Lin SD (2009) Exploiting cloud computing for social network analysis—exemplified in Plurk network analysis. In: Proceedings of international conference on technologies and applications of artificial intelligence (TAAI’09)

  • Lampos V, Cristianini N (2010) Tracking the flu pandemic by monitoring the social web. In: Proceedings of international workshop on cognitive information processing

  • Lampos V, Bie TD, Cristianini N (2010) Flu detector: tracking epidemics on twitter. In: Proceedings of ECML PKDD 2010

  • Leskovec J, Singh A, Kleinberg J (2006) Patterns of influence in a recommendation network. In: Proceedings of Pacific-Asia conference on knowledge discovery and data mining (PAKDD’06)

  • Ma H, Yang H, Lyu MR, King I (2008) Mining social networks using heat diffusion processes for marketing candidates selection. In: Proceedings of ACM international conference on information and knowledge management (CIKM’08)

  • Maiya AS, Berger-Wolf TY (2010) Online sampling of high centrality individuals in social networks. In: Proceedings of Pacific-Asia conference on knowledge discovery and data mining (PAKDD’10)

  • Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (KDD’02)

  • Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD’10)

  • Rushkoff D (1994) Media virus: hidden agendas in popular culture. Ballantine books

  • Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of ACM international conference on world wide web (WWW’10)

  • Sarr I, Missaoui R (2012) Managing node disappearance based on information flow in social networks. J Soc Netw Anal Min (SNAM)

  • Scott J (2011) Social network analysis: developments, advances, and prospects. J Soc Netw Anal Min (SNAM)

  • Snowsill T, Fyson N, Bie TD, Cristianini N (2011) Refining causality: who copied from whom. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (KDD’11)

  • Song X, Chi Y, Hino K, Tseng BL (2007) Information flow modeling based on diffusion rate for prediction and ranking. In: Proceedings of ACM international conference on world wide web (WWW’07)

  • Song X, Chi Y, Hino K, Tseng BL (2007).Identifying opinion leaders in the blogosphere. In: Proceedings of ACM international conference on information and knowledge management (CIKM’07)

  • Steeg GV Galstyan A (2012) Information transfer in social media. In: Proceedings of ACM international conference on world wide web (WWW’12)

  • Stewart A, Chen L, Paiu R, Nejdl W (2007) Discovering information diffusion paths from blogosphere for online advertising. In: Proceedings of international workshop on data mining and audience intelligence for advertising (ADKDD’07)

  • Sun E, Rosenn I, Marlow C, Lento T (2009) Gesundheit! modeling contagion through Facebook news feed. In: Proceedings of AAAI international conference on weblogs and social media (ICWSM’09)

  • Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V (2010) Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of international workshop on social network systems (SNS’10)

  • Yang CC, Tang X, Thuraisingham BM (2010) An analysis of user influence ranking algorithms on Dark Web forums. In: Proceedings of ACM SIGKDD international workshop on intelligence and security informatics (ISI-KDD’10)

  • Zhang W, Wu W, Wang F, Xu K (2012) Positive influence dominating sets in power-law graphs. J Soc Netw Anal Min (SNAM)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou-De Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CT., Kuo, TT., Ho, CT. et al. Modeling and evaluating information propagation in a microblogging social network. Soc. Netw. Anal. Min. 3, 341–357 (2013). https://doi.org/10.1007/s13278-012-0082-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13278-012-0082-8

Keywords