Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling memetics using edge diversity

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

The diffusion of an idea significantly differs from the diffusion of a disease because of the interplay of the complex sociological and behavioral factors in the former. Hence, the conventional epidemiological models fail to capture the heterogeneity of social networks and the complexity of information diffusion. Standard information diffusion models depend heavily on the micro-level parameters of the network like edge weights and implicit vulnerabilities of nodes towards information. Such parameters are rarely available because of the absence of large amounts of information diffusion data. Hence, modeling information diffusion remains a challenging research problem. In this paper, we utilize the peculiar structure of the real-world social networks to derive useful insights into the micro-level parameters. We propose an artificial framework mimicking the real-world information diffusion. The framework includes (1) a synthetic network which structurally resembles a real-world social network and (2) a meme spreading model based on the penta-level classification of edges in the network. The experimental results prove that the synthetic network combined with the proposed spreading model is able to simulate a real-world meme diffusion. The framework is validated with the help of the diffusion data of the Higgs boson meme on Twitter and the datasets of several popular real-world social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. This sentence has just been used as an example. However, studies indicate that the most wealthy and affluent people tend to be the most influential in our societies (Easley and Kleinberg 2010).

  2. The reason is described in Sect. 5.

  3. Higgs boson is one of the most elementary elusive particles in modern physics. A meme on Twitter is considered to be a Higgs boson meme if it contains at least one of these keywords or tags: LHC, CERN, boson, Higgs

  4. Homophily is the name given to the tendency of similar people becoming friends with each other. This leads to more number of ties between like-minded people and hence leads to the formation of communities in the network. Social reinforcement is the phenomenon by which multiple exposures of an information to a person lead to him adopting it. Social reinforcement and homophily tend to block the information inside one community

  5. In the case of random network, even though the declared \(10\%\) core nodes have a high probability of infecting their neighbors, the connections between these nodes are not dense enough to result in an overshoot in the number of infected nodes. Therefore, an absence of a distinct core-periphery structure in such networks makes them invalid for our framework.

References

  • Abrahamson E (1991) Managerial fads and fashions: the diffusion and rejection of innovations. Acad Manag Rev 16(3):586–612

    Article  Google Scholar 

  • Adamic LA, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230

    Article  Google Scholar 

  • Adar E, Adamic LA (2005) Tracking information epidemics in blogspace. In: Proceedings of the 2005 IEEE/WIC/ACM international conference on web intelligence, IEEE Computer Society, pp 207–214

  • Adar E, Zhang L, Adamic LA, Lukose RM (2004) Implicit structure and the dynamics of blogspace. In: Workshop on the weblogging ecosystem, Vol. 13, pp 16989–16995

  • Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2005) k-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases. arXiv preprint arXiv:cs/0511007

  • Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, vol 28. Wiley Online Library, Oxford

    Google Scholar 

  • Aral S, Walker D (2012) Identifying influential and susceptible members of social networks. Science 337(6092):337–341

    Article  MathSciNet  MATH  Google Scholar 

  • Aral S, Muchnik L, Sundararajan A (2009) Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc Natl Acad Sci 106(51):21544–21549

    Article  Google Scholar 

  • Aral S, Muchnik L, Sundararajan A (2013) Engineering social contagions: optimal network seeding in the presence of homophily. Netw Sci 1(2):125–153

    Article  Google Scholar 

  • Arnaboldi V, Conti M, Passarella A, Dunbar RI (2017) Online social networks and information diffusion: the role of ego networks. Online Soc Netw Media 1:44–55

    Article  Google Scholar 

  • Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: membership, growth, and evolution, in: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 44–54

  • Bailey NT et al (1975) The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13:6LE

  • Barabási A-L et al (2009) Scale-free networks: a decade and beyond. Science 325(5939):412

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Barrat A, Barthélemy M, Vespignani A (2004) Weighted evolving networks: coupling topology and weight dynamics. Phys Rev Lett 92(22):228701

    Article  Google Scholar 

  • Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of fads, fashion, custom, and cultural change as informational cascades. J Polit Econ 100(5):992–1026

    Article  Google Scholar 

  • Borgatti SP, Everett MG (2000) Models of core/periphery structures. Soc Netw 21(4):375–395

    Article  Google Scholar 

  • Brauer F (2008) Compartmental models in epidemiology, in: Mathematical epidemiology, Springer, pp. 19–79

  • Brown JJ, Reingen PH (1987) Social ties and word-of-mouth referral behavior. J Consumer Res 14(3):350–362

    Article  Google Scholar 

  • Burt RS (2009) Structural holes: The social structure of competition. Harvard University Press, Cambridge

    Google Scholar 

  • Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197

    Article  Google Scholar 

  • Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. New England J Med 357(4):370–379

    Article  Google Scholar 

  • Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):066111

    Article  Google Scholar 

  • Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature 204:1118

    Article  Google Scholar 

  • De Domenico M, Lima A, Mougel P, Musolesi M (2013) The anatomy of a scientific rumor. Sci Rep 3:2980

    Article  Google Scholar 

  • Easley D, Kleinberg J (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Eguiluz VM, Klemm K (2002) Epidemic threshold in structured scale-free networks. Phys Rev Lett 89(10):108701

    Article  Google Scholar 

  • Erdős P, Rényi A (1961) On the strength of connectedness of a random graph. Acta Mathematica Hungarica 12(1):261–267

    MathSciNet  MATH  Google Scholar 

  • Erez M, Gati E (2004) A dynamic, multi-level model of culture: from the micro level of the individual to the macro level of a global culture. Appl Psychol 53(4):583–598

    Article  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

    Article  MathSciNet  Google Scholar 

  • Gilbert E, Karahalios K (2009) Predicting tie strength with social media. In: Proceedings of the SIGCHI conference on human factors in computing systems, ACM, pp 211–220

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Goel S, Anderson A, Hofman J, Watts DJ (2015) The structural virality of online diffusion. Manag Sci 62(1):180–196

    Google Scholar 

  • Goel S, Watts DJ, Goldstein DG (2012) The structure of online diffusion networks. In: Proceedings of the 13th ACM conference on electronic commerce, ACM, pp 623–638

  • Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market Lett 12(3):211–223

    Article  Google Scholar 

  • Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: Proceedings of the third ACM international conference on Web search and data mining, ACM, pp 241–250

  • Granovetter MS (1973) The strength of weak ties, American journal of sociology 1360–1380

  • Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: Proceedings of the 13th international conference on World Wide Web, ACM, pp 491–501

  • Hein D-IO, Schwind D-W-IM, König W (2006) Scale-free networks. Wirtschaftsinformatik 48(4):267–275

    Article  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Huang L, Park K, Lai Y-C (2006) Information propagation on modular networks. Phys Rev E 73(3):035103

    Article  Google Scholar 

  • Iribarren JL, Moro E (2009) Impact of human activity patterns on the dynamics of information diffusion. Phys Rev Lett 103(3):038702

    Article  Google Scholar 

  • Jackson MO, López-Pintado D (2013) Diffusion and contagion in networks with heterogeneous agents and homophily. Netw Sci 1(1):49–67

    Article  Google Scholar 

  • Jin F, Dougherty E, Saraf P, Cao Y, Ramakrishnan N (2013) Epidemiological modeling of news and rumors on twitter, in:Proceedings of the 7th Workshop on Social Network Mining and Analysis, ACM, p 8

  • Karsai M, Kivelä M, Pan RK, Kaski K, Kertész J, Barabási A-L, Saramäki J (2011) Small but slow world: how network topology and burstiness slow down spreading. Phys Rev E 83(2):025102

    Article  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc Lond Math, Phys Eng Sci 115:700–721

    MATH  Google Scholar 

  • Kim YS, Tran VL (2013) Assessing the ripple effects of online opinion leaders with trust and distrust metrics. Expert Syst Appl 40(9):3500–3511

    Article  Google Scholar 

  • Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893

    Article  Google Scholar 

  • Kucharavy D, De Guio R (2011) Application of s-shaped curves. Procedia Eng 9:559–572

    Article  Google Scholar 

  • Kumar R, Novak J, Tomkins A, Structure and evolution of online social networks (2010) 337–357 https://doi.org/10.1007/978-1-4419-6515-8_13

  • Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, ACM, pp 1343–1350

  • Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection, http://snap.stanford.edu/data

  • Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems, pp 539–547

  • Leskovec J, McGlohon M, Faloutsos C, Glance NS, Hurst M (2007) Patterns of cascading behavior in large blog graphs. In: SDM, Vol. 7, SIAM, pp 551–556

  • Lewis TG (2011) Network science: Theory and applications. Wiley, New York

    Google Scholar 

  • Liben-Nowell D, Kleinberg J (2008) Tracing information flow on a global scale using internet chain-letter data. Proc Natl Acad Sci 105(12):4633–4638

    Article  Google Scholar 

  • Luu DM, Lim E-P, Hoang T-A, Chua FCT (2012) Modeling diffusion in social networks using network properties. In: ICWSM

  • Mahajan V, Muller E, Bass FM (1991) New product diffusion models in marketing: a review and directions for research. In: Diffusion of technologies and social behavior, Springer, pp 125–177

  • McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Ann Rev Sociol 27(1):415–444

    Article  Google Scholar 

  • Najar A, Denoyer L, Gallinari P (2012) Predicting information diffusion on social networks with partial knowledge. In: Proceedings of the 21st International Conference on World Wide Web, ACM, pp 1197–1204

  • Newman ME (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128

    Article  MathSciNet  Google Scholar 

  • Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    Article  MathSciNet  MATH  Google Scholar 

  • Norton JA, Bass FM (1987) A diffusion theory model of adoption and substitution for successive generations of high-technology products. Manag Sci 33(9):1069–1086

    Article  Google Scholar 

  • Paolillo JC (2001) Language variation on internet relay chat: a social network approach. J Sociolinguistics 5(2):180–213

    Article  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117

    Article  Google Scholar 

  • Pei S, Muchnik L, Andrade JS Jr, Zheng Z, Makse HA (2014) Searching for superspreaders of information in real-world social media. Sci Rep 4:5547

    Article  Google Scholar 

  • Pei S, Muchnik L, Tang S, Zheng Z, Makse HA (2015) Exploring the complex pattern of information spreading in online blog communities. PloS One 10(5):e0126894

    Article  Google Scholar 

  • Peres R, Muller E, Mahajan V (2010) Innovation diffusion and new product growth models: a critical review and research directions. Int J Res Market 27(2):91–106

    Article  Google Scholar 

  • Petróczi A, Nepusz T, Bazsó F (2007) Measuring tie-strength in virtual social networks. Connections 27(2):39–52

    Google Scholar 

  • Rogers EM (2010) Diffusion of innovations. Simon and Schuster, New York

    Google Scholar 

  • Rogers EM, Shoemaker FF (1971) Communication of innovations; a cross-cultural approach. Free Press, New York

    Google Scholar 

  • Rossa FD, Dercole F, Piccardi C (2013) Profiling core-periphery network structure by random walkers. Sci Rep 3:1467

    Article  Google Scholar 

  • Saito K, Kimura M, Ohara K, Motoda H (2012) Efficient discovery of influential nodes for sis models in social networks. Knowl Inf Syst 30(3):613–635

    Article  Google Scholar 

  • Sampson RJ (1991) Linking the micro-and macrolevel dimensions of community social organization. Soc Forces 70(1):43–64

    Article  Google Scholar 

  • Serazzi G, Zanero S (2004) Computer virus propagation models. Performance tools and applications to networked systems. Springer, Berlin, pp 26–50

    Chapter  Google Scholar 

  • Shen H-W (2013) Community structure of complex networks. Springer, Berlin

    Book  MATH  Google Scholar 

  • Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771

    Article  MathSciNet  MATH  Google Scholar 

  • Weng L, Menczer F, Ahn Y-Y (2013) Virality prediction and community structure in social networks. Sci Rep 3:2522

    Article  Google Scholar 

  • Weng L, Menczer F, Ahn Y-Y (2014) Predicting successful memes using network and community structure. arXiv preprint arXiv:1403.6199

  • Wu J-J, Gao Z-Y, Sun H-J (2006) Cascade and breakdown in scale-free networks with community structure. Phys Rev E 74(6):066111

    Article  Google Scholar 

  • Xiang R, Neville J, Rogati M (2010) Modeling relationship strength in online social networks. In: Proceedings of the 19th international conference on world wide web. ACM, pp 981–990

  • Xiong F, Liu Y, Zhang Z-J, Zhu J, Zhang Y (2012) An information diffusion model based on retweeting mechanism for online social media. Phys Lett A 376(30–31):2103–2108

    Article  Google Scholar 

  • Yang Z, Guo J, Cai K, Tang J, Li J, Zhang L, Su Z (2010) Understanding retweeting behaviors in social networks. In: Proceedings of the 19th ACM international conference on Information and knowledge management, ACM, pp 1633–1636

  • Zou CC, Gong W, Towsley D (2002) Code red worm propagation modeling and analysis. In: Proceedings of the 9th ACM conference on Computer and communications security, ACM, pp 138–147

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yayati Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, Y., Iyengar, S.R.S., Saxena, A. et al. Modeling memetics using edge diversity. Soc. Netw. Anal. Min. 9, 2 (2019). https://doi.org/10.1007/s13278-018-0546-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-018-0546-6

Keywords