Abstract
Recently, microfiber-optic sensors with high sensitivity, fast response times, and a compact size have become an area of interest that integrates fiber optics and nanotechnology. Distinct advantages of optical microfiber, such as large accessible evanescent fields and convenient configurability, provide attractive benefits for micro- and nano-scale optical sensing. Here, we review the basic principles of microfiber-optic sensors based on a broad range of microstructures, nanostructures, and functional materials. We also introduce the recent progress and state-of-the-art in this field and discuss the limitations and opportunities for future development.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C. W. Hansell, “Picture transmission,” U.S. Patent 1,751,584, Mar. 25, 1930.
A. C. S. Van Heel, “A new method of transporting optical images without aberrations,” Nature, 1954, 173(4392): 39.
H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature, 1954, 173(4392): 39–41.
E. Udd and W. B. Spillman, Fiber optic sensors: an introduction for engineers and scientists. Hoboken: John Wiley & Sons, Inc., 2011.
K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, 1966, 113(7): 1151–1158.
F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Applied Physics Letters, 1970, 17(10): 423–425.
R. Bergh, H. Lefevre, and H. Shaw, “An overview of fiber-optic gyroscopes,” Journal of Lightwave Technology, 1984, 2(2): 91–107.
J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” The Journal of the Acoustical Society of America, 1977, 62(5): 1302–1304.
T. Yoshino, K. Kurosawa, K. Itoh, and T. Ose, “Fiber-optic Fabry-Perot interferometer and its sensor applications,” IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612–1621.
A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, et al., “Fiber grating sensors,” Journal of Lightwave Technology, 1997, 15(8): 1442–1463.
B. Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology, 2003, 9(2): 57–79.
M. F. S. Ferreira, E. Castro-Camus, D. J. Ottaway, J. M. López-Higuera, X. Feng, W. Jin, et al., “Roadmap on optical sensors,” Journal of Optics, 2017, 19(8): 083001.
L. Zhang, Y. Tang, and L. Tong, “Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology,” Iscience, 2020, 23(1): 100810.
G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, et al., “Optical fiber nanowires and microwires: Fabrication and applications,” Advances in Optics and Photonics, 2009, 1(1): 107–161.
R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser & Photonics Reviews, 2013, 7(3): 350–384.
L. Tong, “Micro/nanofibre optical sensors: Challenges and prospects,” Sensors, 2018, 18(3): 903.
L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Optics Communications, 2012, 285(23): 4641–4647.
L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, et al., “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature, 2003, 426(6968): 816–819.
L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, 2004, 12(6): 1025–1035.
J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Optics Express, 2005, 13(6): 2135–2140.
J. L. Kou, M. Ding, J. Feng, Y. Q. Lu, F. Xu, and G. Brambilla, “Microfiber-based Bragg gratings for sensing applications: a review,” Sensors, 2012, 12(7): 8861–8876.
S. C. Yan and F. Xu, “A review on optical microfibers in fluidic applications,” Journal of Micromechanics and Microengineering, 2017, 27(9): 093001.
J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Optics Letters, 1997, 22(15): 1129–1131.
K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Applied Optics, 2007, 46(9): 1429–1434.
F. Le Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Physical Review A, 2004, 70(6): 063403.
G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Japanese Journal of Applied Physics, 2008, 47(8S1): 6716–6718.
J. Lægsgaard, “Theory of surface second-harmonic generation in silica nanowires,” Journal of the Optical Society of America B, 2010, 27(7): 1317–1324.
M. A. Gouveia, T. Lee, R. Ismaeel, M. Ding, N. G. R. Broderick, C. M. B. Cordeiro, et al., “Second harmonic generation and enhancement in microfibers and loop resonators,” Applied Physics Letters, 2013, 102(20): 201120.
A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: From silica experiments to highly nonlinear glass prospects,” Optics Communications, 2012, 285(16): 3493–3497.
M. I. M. A. Khudus, T. Lee, F. De Lucia, C. Corbari, P. Sazio, P. Horak, et al., “All-fiber fourth and fifth harmonic generation from a single source,” Optics Express, 2016, 24(19): 21777–21793.
Y. Wang, T. Lee, F. De Lucia, M. I. M. Abdul Khudus, P. J. A. Sazio, M. Beresna, et al., “All-fiber sixth-harmonic generation of deep UV,” Optics Letters, 2017, 42(22): 4671–4674.
Y. H. Li, Y. Y. Zhao, and L. J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Optics Letters, 2012, 37(16): 3441–3443.
S. Tang, Z. Wu, F. Xu, and Y. Lu, “Simulation of optical microfiber strain sensors based on four-wave mixing,” IEEE Sensors Journal, 2016, 16(9): 3068–3074.
S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Optics Express, 2004, 12(13): 2864–2869.
F. Le Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Physical Review A, 2005, 72(6): 063815.
K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” Journal of Optics, 2018, 20(7): 073001.
G. Y. Chen, D. G. Lancaster, and T. M. Monro, “Optical microfiber technology for current, temperature, acceleration, acoustic, humidity and ultraviolet light sensing,” Sensors, 2018, 18(1): 72.
J. H. Chen, D. R. Li, and F. Xu, “Optical microfiber sensors: Sensing mechanisms, and recent advances,” Journal of Lightwave Technology, 2019, 37(11): 2577–2589.
B. Guan and Y. Huang, “Interface sensitized optical microfiber biosensors,” Journal of Lightwave Technology, 2019, 37(11): 2616–2622.
W. Talataisong, R. Ismaeel, and G. Brambilla, “A review of microfiber-based temperature sensors,” Sensors, 2018, 18(2): 461.
P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors, 2015, 5(3): 471–499.
Y. Wu, B. Yao, C. Yu, and Y. Rao, “Optical graphene gas sensors based on microfibers: a review,” Sensors, 2018, 18(4): 941.
D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Optics Letters, 2008, 33(7): 660–662.
G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, “Compound-glass optical nanowires,” Electronics Letters, 2005, 41(7): 400–402.
O. Aktaş and M. Bayındır, “Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators,” Applied Optics, 2017, 56(3): 385–390.
S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, et al., “Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers,” Nano Letters, 2004, 4(10): 1931–1937.
X. Xing, Y. Wang, and B. Li, “Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate),” Optics Express, 2008, 16(14): 10815–10822.
F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano, 2010, 4(9): 5332–5338.
P. Wang, Y. Wang, and L. Tong, “Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale,” Light: Science & Applications, 2013, 2(10): e102.
L. Persano, A. Camposeo, and D. Pisignano, “Active polymer nanofibers for photonics, electronics, energy generation and micromechanics,” Progress in Polymer Science, 2015, 43: 48–95.
G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, 2004, 12(10): 2258–2263.
M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Optics Express, 2004, 12(15): 3521–3531.
E. J. Zhang, W. D. Sacher, and J. K. S. Poon, “Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers,” Optics Express, 2010, 18(21): 22593–22598.
L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, et al., “Photonic nanowires directly drawn from bulk glasses,” Optics Express, 2006, 14(1): 82–87.
R. Nagai and T. Aoki, “Ultra-low-loss tapered optical fibers with minimal lengths,” Optics Express, 2014, 22(23): 28427–28436.
L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, et al., “Fabrication of submicron-diameter silica fibers using electric strip heater,” Optics Express, 2006, 14(12): 5055–5060.
I. Yokohama, J. Noda, and K. Okamoto, “Fiber-coupler fabrication with automatic fusion-elongation processes for low excess loss and high coupling-ratio accuracy,” Journal of Lightwave Technology, 1987, 5(7): 910–915.
F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, “Low-loss highly overcoupled fused couplers: Fabrication and sensitivity to external pressure,” Journal of Lightwave Technology, 1988, 6(10): 1476–1482.
G. Brambilla and D. N. Payne, “The ultimate strength of glass silica nanowires,” Nano Letters, 2009, 9(2): 831–835.
L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, et al., “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Letters, 2005, 5(2): 259–262.
H. Yu, S. Wang, J. Fu, M. Qiu, Y. Li, F. Gu, et al. “Modeling bending losses of optical nanofibers or nanowires,” Applied Optics, 2009, 48(22): 4365–4369.
M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Applied Physics Letters, 2005, 86(16): 161108.
M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The microfiber loop resonator: Theory, experiment, and application,” Journal of Lightwave Technology, 2006, 24(1): 242–250.
X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, et al., “Demonstration of microfiber knot laser,” Applied Physics Letters, 2006, 89(14): 143513.
X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Applied Physics Letters, 2007, 90(23): 233501.
M. Sumetsky, “Optical fiber microcoil resonator,” Optics Express, 2004, 12(10): 2303–2316.
M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Optics Express, 2005, 13(11): 4331–4340.
F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Optics Express, 2007, 15(12): 7888–7893.
F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Applied Physics Letters, 2008, 92(10): 101126.
F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Optics Letters, 2007, 32(15): 2164–2166.
P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, and G. Farrell, “High temperature performance of an optical microfibre coupler and its potential use as a sensor,” Electronics Letters, 2012, 48(5): 283–284.
M. Ding, P. Wang, and G. Brambilla, “Fast-response high-temperature microfiber coupler tip thermometer,” IEEE Photonics Technology Letters, 2012, 24(14): 1209–1211.
B. S. Kawasaki, K. O. Hill, and R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Optics Letters, 1981, 6(7): 327–328.
Y. Jung, G. Brambilla, and D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Optics Express, 2009, 17(7): 5273–5278.
M. Ding, P. Wang, and G. Brambilla, “A microfiber coupler tip thermometer,” Optics Express, 2012, 20(5): 5402–5408.
K. Liu, Y. He, A. Yang, L. Shi, L. Huang, P. Zhou, et al., “Resonant response and mode conversion of the microsphere coupled with a microfiber coupler,” Optics Letters, 2019, 44(4): 879–882.
Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Optics Letters, 2008, 33(4): 303–305.
J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, et al., “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Optics Letters, 2012, 37(1): 67–69.
J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, et al., “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Optics Letters, 2011, 36(18): 3593–3595.
L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, et al., “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Optics Express, 2012, 20(9): 10180–10185.
W. B. Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technology Letters, 2012, 24(20): 1872–1874.
C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazão, and C. M. B. Cordeiro, “Multimode interference tapered fiber refractive index sensors,” Applied Optics, 2012, 51(24): 5941–5945.
C. Li, S. Qiu, Y. Chen, F. Xu, and Y. Lu, “Ultra-sensitive refractive index sensor with slightly tapered photonic crystal fiber,” IEEE Photonics Technology Letters, 2012, 24(19): 1771–1774.
J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, et al., “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Applied Optics, 2011, 50(28): 5503–5507.
L. Xu, Y. Li, and B. Li, “Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing,” Applied Physics Letters, 2012, 101(15): 153510.
M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, “Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution,” Measurement Science and Technology, 2010, 21(10): 105801.
L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Optics Express, 2012, 20(16): 18079–18084.
B. L. Li, J. H. Chen, F. Xu, and Y. Q. Lu, “Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications,” Optics Express, 2017, 25(4): 4326–4334.
Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Optics Express, 2013, 21(1): 154–164.
B. S. Kawasaki and K. O. Hill, “Low-loss access coupler for multimode optical fiber distribution networks,” Applied Optics, 1977, 16(7): 1794–1795.
R. A. Bergh, G. Kotler, and H. J. Shaw, “Single-mode fibre optic directional coupler,” Electronics Letters, 1980, 16(7): 260–261.
Y. Szu-Wen, W. Tzong-Lin, W. Cheng Wen, and C. Hung-Chun, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters. Part II: the three-dimensional electromagnetic model,” Journal of Lightwave Technology, 1998, 16(4): 691.
C. R. Liao, D. N. Wang, X. He, and M. W. Yang, “Twisted optical microfibers for refractive index sensing,” IEEE Photonics Technology Letters, 2011, 23(13): 848–850.
S. C. Yan, Y. Chen, C. Li, F. Xu, and Y. Q. Lu, “Differential twin receiving fiber-optic magnetic field and electric current sensor utilizing a microfiber coupler,” Optics Express, 2015, 23(7): 9407–9414.
Q. Zhang, J. Lei, B. Cheng, Y. Song, L. Hua, and H. Xiao, “A microfiber half coupler for refractive index sensing,” IEEE Photonics Technology Letters, 2017, 29(18): 1525–1528.
S. Pu, L. Luo, J. Tang, L. Mao, and X. Zeng, “Ultrasensitive refractive-index sensors based on tapered fiber coupler with Sagnac loop,” IEEE Photonics Technology Letters, 2016, 28(10): 1073–1076.
Y. Chen, S. C. Yan, X. Zheng, F. Xu, and Y. Q. Lu, “A miniature reflective micro-force sensor based on a microfiber coupler,” Optics Express, 2014, 22(3): 2443–2450.
L. Zu, H. Zhang, Y. Miao, and B. Li, “Microfiber coupler with a Sagnac loop for water pollution detection,” in Proceedings of 18th International Conference on Optical Communications and Networks (ICOCN), Anhui, 2019, pp. 1–3.
H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, et al., “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Optics Letters, 2015, 40(21): 5042–5045.
K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Applied Physics Letters, 2016, 109(10): 101101.
D. A. Jackson, A. Dandridge, and S. K. Sheem, “Measurement of small phase shifts using a single-mode optical-fiber interferometer,” Optics Letters, 1980, 5(4): 139–141.
R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Optics Letters, 2009, 34(5): 617–619.
Y. Du, Y. Chen, Y. Zhuang, C. Zhu, F. Tang, and J. Huang, “Probing nanostrain via a mechanically designed optical fiber interferometer,” IEEE Photonics Technology Letters, 2017, 29(16): 1348–1351.
Y. Xue, Y. S. Yu, R. Yang, C. Wang, C. Chen, J. C. Guo, et al., “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Optics Letters, 2013, 38(8): 1209–1211.
M. F. Jaddoa, A. A. Jasim, M. Z. A. Razak, S. W. Harun, and H. Ahmad, “Highly responsive NaCl detector based on inline microfiber Mach-Zehnder interferometer,” Sensors and Actuators A: Physical, 2016, 237: 56–61.
V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Optics Express, 2005, 13(19): 7609–7614.
P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, W. Sun, et al., “Photonic crystal fiber half-taper probe based refractometer,” Optics Letters, 2014, 39(7): 2076–2079.
S. J. Qiu, Y. Chen, J. L. Kou, F. Xu, and Y. Q. Lu, “Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching,” Applied Optics, 2011, 50(22): 4328–4332.
P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, et al., “Fiber-tip high-temperature sensor based on multimode interference,” Optics Letters, 2013, 38(22): 4617–4620.
R. M. Andre, C. R. Biazoli, S. O. Silva, M. B. Marques, C. M. B. Cordeiro, and O. Frazao, “Strain-temperature discrimination using multimode interference in tapered fiber,” IEEE Photonics Technology Letters, 2013, 25(2): 155–158.
T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, 1997, 15(8): 1277–1294.
K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, 1978, 32(10): 647–649.
K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 1997, 15(8): 1263–1276.
B. O. Guan, J. Li, L. Jin, and Y. Ran, “Fiber Bragg gratings in optical microfibers,” Optical Fiber Technology, 2013, 19(6): 793–801.
A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonics Technology Letters, 2004, 16(4): 1149–1151.
W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Applied Physics Letters, 2005, 86(15): 151122.
G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. L. Roux, and P. S. J. Russell, “Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers,” Optics Letters, 2001, 26(15): 1137–1139.
X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Optics Letters, 2010, 35(7): 1007–1009.
Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. Wang, P. Shum, et al., “Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating,” Optics Express, 2010, 18(25): 26345–26350.
P. Zhao, Y. Li, J. Zhang, L. Shi, and X. Zhang, “Nanohole induced microfiber Bragg gratings,” Optics Express, 2012, 20(27): 28625–28630.
C. Liao, K. Yang, J. Wang, Z. Bai, Z. Gan, and Y. Wang, “Helical microfiber Bragg grating printed by femtosecond laser for refractive index sensing,” IEEE Photonics Technology Letters, 2019, 31(12): 971–974.
K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, et al., “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Optics Express, 2011, 19(15): 14040–14050.
Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Optics Letters, 2011, 36(16): 3115–3117.
J. L. Kou, S. J. Qiu, F. Xu, and Y. Q. Lu, “Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe,” Optics Express, 2011, 19(19): 18452–18457.
M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Applied Physics Letters, 2011, 99(5): 051105.
M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Optics Express, 2011, 19(16): 15621–15626.
J. Feng, M. Ding, J. Kou, F. Xu, and Y. Lu, “An optical fiber tip micrograting thermometer,” IEEE Photonics Journal, 2011, 3(5): 810–814.
J. Kou, S. Qiu, F. Xu, Y. Lu, Y. Yuan, and G. Zhao, “Miniaturized metal-dielectric-hybrid fiber tip grating for refractive index sensing,” IEEE Photonics Technology Letters, 2011, 23(22): 1712–1714.
W. Ding, S. R. Andrews, T. A. Birks, and S. A. Maier, “Modal coupling in fiber tapers decorated with metallic surface gratings,” Optics Letters, 2006, 31(17): 2556–2558.
Y. Shen, L. Yao, Z. Li, J. Kou, Y. Cui, J. Bian, et al., “Double transfer UV-curing nanoimprint lithography,” Nanotechnology, 2013, 24(46): 465304.
F. Xu, G. Brambilla, and Y. Lu, “A microfluidic refractometric sensor based on gratings in optical fibre microwires,” Optics Express, 2009, 17(23): 20866–20871.
F. Xu, G. Brambilla, J. Feng, and Y. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photonics Technology Letters, 2010, 22(4): 218–220.
J. L. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Applied Physics B, 2011, 102(3): 615–619.
K. P. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” Optics Express, 2013, 21(2): 2480–2490.
H. Takashima, A. Fukuda, H. Maruya, T. Tashima, A. W. Schell, and S. Takeuchi, “Fabrication of a nanofiber Bragg cavity with high quality factor using a focused helium ion beam,” Optics Express, 2019, 27(5): 6792–6800.
R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Physical Review Letters, 2014, 113(14): 143601.
J. Kou, F. Xu, and H. Choo, “Implementation of a high-Q, small mode volume cavity in microfibers using lattice-constant-varying nanohole arrays,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 85–88.
I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Optics Letters, 2006, 31(9): 1319–1321.
M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Optics Express, 2007, 15(22): 14376–14381.
J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Optics Letters, 2010, 35(13): 2308–2310.
J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Optics Express, 2010, 18(13): 14245–14250.
S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber sagnac loop mirrors,” Optics Letters, 2009, 34(3): 253–255.
G. Vienne, A. Coillet, P. Grelu, M. E. Amraoui, J. C. Jules, F. Smektala, et al., “Demonstration of a reef knot microfiber resonator,” Optics Express, 2009, 17(8): 6224–6229.
Y. Jung, G. Brambilla, G. S. Murugan, and D. J. Richardson, “Optical racetrack ring-resonator based on two U-bent microfibers,” Applied Physics Letters, 2011, 98(2): 021109.
R. Ismaeel, T. Lee, F. Al-Saab, Y. Jung, and G. Brambilla, “A self-coupling multi-port microcoil resonator,” Optics Express, 2012, 20(8): 8568–8574.
Z. Xu, Q. Sun, B. Li, Y. Luo, W. Lu, D. Liu, et al., “Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect,” Optics Express, 2015, 23(5): 6662–6672.
Z. Xu, Y. Luo, D. Liu, P. P. Shum, and Q. Sun, “Sensitivity-controllable refractive index sensor based on reflective θ-shaped microfiber resonator cooperated with Vernier effect,” Scientific Reports, 2017, 7(1): 9620.
C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” Journal of Lightwave Technology, 2006, 24(3): 1395–1402.
I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Optics Express, 2008, 16(2): 1020–1028.
X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, et al., “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Letters, 2009, 9(12): 4515–4519.
S. C. Yan, Z. Y. Liu, C. Li, S. J. Ge, F. Xu, and Y. Q. Lu, “Hot-wire” microfluidic flowmeter based on a microfiber coupler,” Optics Letters, 2016, 41(24): 5680–5683.
F. Gu, G. Wu, and H. Zeng, “Hybrid photon-plasmon Mach-Zehnder interferometers for highly sensitive hydrogen sensing,” Nanoscale, 2015, 7(3): 924–929.
J. H. Chen, Y. Chen, W. Luo, J. L. Kou, F. Xu, and Y. Q. Lu, “Multifunctional optical nanofiber polarization devices with 3D geometry,” Optics Express, 2014, 22(15): 17890–17896.
H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Optics Express, 2012, 20(19): 21693–21701.
Z. X. Ding, Z. N. Huang, Y. Chen, C. Mou, Y. Q. Lu, and F. Xu, “All-fiber ultrafast laser generating gigahertz-rate pulses based on a hybrid plasmonic microfiber resonator,” Advanced Photonics, 2020, 2(2): 026002.
J. H. Li, J. H. Chen, S. C. Yan, Y. P. Ruan, F. Xu, and Y. Q. Lu, “Versatile hybrid plasmonic microfiber knot resonator,” Optics Letters, 2017, 42(17): 3395–3398.
D. Cai, T. Tong, Z. Zhang, J. Pan, L. Zhang, and L. Tong, “Functional film coated optical micro/nanofibers for high-performance gas sensing,” IEEE Sensors Journal, 2019, 19(20): 9229–9234.
D. Li, G. Wu, J. Chen, S. Yan, Z. Liu, F. Xu, et al., “Ethanol gas sensor based on a hybrid polymethyl methacrylate-silica microfiber coupler,” Journal of Lightwave Technology, 2018, 36(10): 2031–2036.
F. Gu, X. Yin, H. Yu, P. Wang, and L. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Optics Express, 2009, 17(13): 11230–11235.
F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Letters, 2008, 8(9): 2757–2761.
J. H. Chen, G. Q. Deng, S. C. Yan, C. Li, K. Xi, F. Xu, et al. “Microfiber-coupler-assisted control of wavelength tuning for Q-switched fiber laser with few-layer molybdenum disulfide nanoplates,” Optics Letters, 2015, 40(15): 3576–3579.
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, et al., “Graphene-coated microfiber bragg grating for high-sensitivity gas sensing,” Optics Letters, 2014, 39(5): 1235–1237.
S. Sridevi, K. S. Vasu, S. Sampath, S. Asokan, and A. K. Sood, “Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide,” Journal of Biophotonics, 2016, 9(7): 760–769.
C. B. Yu, Y. Wu, X. L. Liu, B. C. Yao, F. Fu, Y. Gong, et al., “Graphene oxide deposited microfiber knot resonator for gas sensing,” Optical Materials Express, 2016, 6(3): 727–733.
Y. Huang, B. Yu, T. Guo, and B. O. Guan, “Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer,” RSC Advances, 2017, 7(22): 13177–13183.
B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, et al., “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Optics Express, 2014, 22(23): 28154–28162.
Y. Wu, B. C. Yao, A. Q. Zhang, X. L. Cao, Z. G. Wang, Y. J. Rao, et al., “Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing,” Optics Letters, 2014, 39(20): 6030–6033.
J. Zhang, H. Fu, J. Ding, M. Zhang, and Y. Zhu, “Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor,” Applied Optics, 2017, 56(31): 8828–8831.
Y. Bai, Y. Miao, H. Zhang, and J. Yao, “Simultaneous measurement of relative humidity and temperature using a microfiber coupler coated with molybdenum disulfide nanosheets,” Optical Materials Express, 2019, 9(7): 2846–2858.
J. H. Chen, J. Tan, G. X. Wu, X. J. Zhang, F. Xu, and Y. Q. Lu, “Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures,” Light: Science & Applications, 2019, 8(1): 1–8.
D. Zhang, H. Guan, W. Zhu, J. Yu, H. Lu, W. Qiu, et al., “All light-control-light properties of molybdenum diselenide (MoSe2)-coated-microfiber,” Optics Express, 2017, 25(23): 28536–28546.
S. R. Azzuhri, I. S. Amiri, A. S. Zulkhairi, M. A. M. Salim, M. Z. A. Razak, M. F. Khyasudeen, et al., “Application of graphene oxide based microfiber-knot resonator for relative humidity sensing,” Results in Physics, 2018, 9: 1572–1577.
W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, et al., “Ultrafast all-optical graphene modulator,” Nano Letters, 2014, 14(2): 955–959.
L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, et al., “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics Journal, 2016, 8(6): 1–7.
H. Guo, F. Pang, X. Zeng, N. Chen, Z. Chen, and T. Wang, “Temperature sensor using an optical fiber coupler with a thin film,” Applied Optics, 2008, 47(19): 3530–3534.
L. Luo, S. Pu, J. Tang, X. Zeng, and M. Lahoubi, “Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid,” Applied Physics Letters, 2015, 106(19): 193507.
Y. Zheng, X. Dong, C. C. Chan, P. P. Shum, and H. Su, “Optical fiber magnetic field sensor based on magnetic fluid and microfiber mode interferometer,” Optics Communications, 2015, 336: 5–8.
X. Li and H. Ding, “All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid,” Optics Letters, 2012, 37(24): 5187–5189.
T. Tan, X. Jiang, C. Wang, B. Yao, and H. Zhang, “2D material optoelectronics for information functional device applications: status and challenges,” Advanced Science, 2020, 7: 2000058.
W. Yang, L. Gan, H. Li, and T. Zhai, “Two-dimensional layered nanomaterials for gas-sensing applications,” Inorganic Chemistry Frontiers, 2016, 3(4): 433–451.
F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, 2010, 4(9): 611–622.
K. Li, N. Zhang, N. M. Y. Zhang, W. Zhou, T. Zhang, M. Chen, et al., “Birefringence induced Vernier effect in optical fiber modal interferometers for enhanced sensing,” Sensors and Actuators B: Chemical, 2018, 275: 16–24.
Y. Jiang, Z. Fang, Y. Du, E. Lewis, G. Farrell, and P. Wang, “Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids,” Optics Express, 2018, 26(1): 356–366.
L. Zhao, Y. Zhang, J. Wang, and Y. Chen, “Highly sensitive temperature sensor based on an isopropanol-sealed optical microfiber coupler,” Applied Physics Letters, 2018, 113(11): 111901.
Y. Peng, Y. Zhao, X. G. Hu, and M. Q. Chen, “Humidity sensor based on unsymmetrical U-shaped twisted microfiber coupler with wide detection range,” Sensors and Actuators B: Chemical, 2019, 290: 406–413.
Y. Zhao, Y. Peng, M. Q. Chen, F. Xia, and R. J. Tong, “U-shaped microfiber coupler coated with polyvinyl alcohol film for highly sensitive humidity detection,” Sensors and Actuators A: Physical, 2019, 285: 628–636.
M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sensors Journal, 2017, 17(2): 333–339.
K. T. Kim, K. J. Cho, K. Im, S. Baik, C. Lee, and J. Lee, “High sensitivity refractive index sensor based on a wet-etched fused fiber coupler,” IEEE Sensors Journal, 2010, 11(7): 1568–1572.
N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, et al., “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Optics Express, 2018, 26(22): 29148–29158.
J. Wang, Q. Sun, Y. Li, S. Tan, L. Yang, F. Fang, et al., “Highly sensitive liquid-level sensor based on an optical reflective microfiber probe,” Optics Letters, 2020, 45(1): 169–172.
B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, et al., “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensors and Actuators B: Chemical, 2014, 194: 142–148.
H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Optics Letters, 2014, 39(13): 4049–4052.
H. Luo, Q. Sun, Z. Xu, W. Jia, D. Liu, and L. Zhang, “Microfiber-based inline Mach-Zehnder interferometer for dual-parameter measurement,” IEEE Photonics Journal, 2015, 7(2): 1–8.
Q. Sun, H. Luo, H. Luo, M. Lai, D. Liu, and L. Zhang, “Multimode microfiber interferometer for dual-parameters sensing assisted by Fresnel reflection,” Optics Express, 2015, 23(10): 12777–12783.
Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, et al., “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sensors and Actuators B: Chemical, 2018, 255: 3004–3010.
S. Lee, S. S. Saini, and M. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technology Letters, 2010, 22(19): 1431–1433.
T. Wieduwilt, S. Brückner, and H. Bartelt, “High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers,” Measurement Science and Technology, 2011, 22(7): 075201.
W. Luo, J. L. Kou, Y. Chen, F. Xu, and Y. Q. Lu, “Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor,” Applied Physics Letters, 2012, 101(13): 133502.
M. Tian, Y. Huang, C. Li, and M. Lv, “High-performance humidity sensor based on a micro-nano fiber Bragg grating coated with graphene oxide,” Optics Express, 2020, 28(18): 26395–26406.
S. M. Lee, M. Y. Jeong, and S. S. Saini, “Etched-core fiber Bragg grating sensors integrated with microfluidic channels,” Journal of Lightwave Technology, 2011, 30(8): 1025–1031.
G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. S. J. Russell, “Low-loss deposition of solgel-derived silica films on tapered fibers,” Optics Letters, 2004, 29(7): 694–696.
H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Optics Express, 2009, 17(24): 21882–21890.
P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Optics Express, 2016, 24(22): 25380–25388.
X. Li and H. Ding, “A stable evanescent field-based microfiber knot resonator refractive index sensor,” IEEE Photonics Technology Letters, 2014, 26(16): 1625–1628.
Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Optics Express, 2009, 17(20): 18142–18147.
X. Zeng, Y. Wu, C. Hou, J. Bai, and G. Yang, “A temperature sensor based on optical microfiber knot resonator,” Optics Communications, 2009, 282(18): 3817–3819.
Z. Liu, X. Qiao, and R. Wang, “Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing,” Applied Optics, 2017, 56(2): 256–259.
Y. Wu, L. Jia, T. Zhang, Y. Rao, and Y. Gong, “Microscopic multi-point temperature sensing based on microfiber double-knot resonators,” Optics Communications, 2012, 285(8): 2218–2222.
J. Li, L. Gai, H. Li, and H. Hu, “A high sensitivity temperature sensor based on packaged microfibre knot resonator,” Sensors and Actuators A: Physical, 2017, 263: 369–372.
X. Guo, Y. Li, X. Jiang, and L. Tong, “Demonstration of critical coupling in microfiber loops wrapped around a copper rod,” Applied Physics Letters, 2007, 91(7): 073512.
S. C. Yan, B. C. Zheng, J. H. Chen, F. Xu, and Y. Q. Lu, “Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator,” Applied Physics Letters, 2015, 107(5): 053502.
J. Hou, H. Ding, B. Wei, C. Gao, and X. Li, “Microfiber knot resonator based electric field sensor,” Instrumentation Science & Technology, 2017, 45(3): 259–267.
Y. Wu, T. Zhang, Y. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sensors and Actuators B: Chemical, 2011, 155(1): 258–263.
Y. Yin, S. Li, S. Wang, S. Jia, J. Ren, G. Farrell, et al., “Ultra-high-resolution detection of Pb2+ ions using a black phosphorus functionalized microfiber coil resonator,” Photonics Research, 2019, 7(6): 622–629.
Y. Yin, S. Li, J. Ren, G. Farrell, E. Lewis, and P. Wang, “High-sensitivity salinity sensor based on optical microfiber coil resonator,” Optics Express, 2018, 26(26): 34633–34640.
Y. Jung, G. S. Murugan, G. Brambilla, and D. J. Richardson, “Embedded optical microfiber coil resonator with enhanced high-Q,” IEEE Photonics Technology Letters, 2010, 22(22): 1638–1640.
G. Vienne, Y. Li, and L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photonics Technology Letters, 2007, 19(18): 1386–1388.
F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Optics Express, 2007, 15(19): 11952–11958.
L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip, 2011, 11(21): 3720–3724.
R. Lorenzi, Y. Jung, and G. Brambilla, “In-line absorption sensor based on coiled optical microfiber,” Applied Physics Letters, 2011, 98(17): 173504.
H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H. P. Loock, “Chemical sensing using fiber cavity ring-down spectroscopy,” Sensors, 2010, 10(3): 1716–1742.
J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Optics Express, 2005, 13(13): 5087–5092.
T. Wieduwilt, M. Zeisberger, M. Thiele, B. Doherty, M. Chemnitz, A. Csaki, et al., “Gold-reinforced silver nanoprisms on optical fiber tapers—a new base for high precision sensing,” APL Photonics, 2016, 1(6): 066102.
K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta, 2014, 120: 419–424.
G. Liu and K. Li, “Micro/nano optical fibers for label-free detection of abrin with high sensitivity,” Sensors and Actuators B: Chemical, 2015, 215: 146–151.
L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Optics Express, 2008, 16(17): 13349–13353.
P. C. A. Jerónimo, A. N. Araújo, and M. C. B. S. M. Montenegro, “Optical sensors and biosensors based on sol-gel films,” Talanta, 2007, 72(1): 13–27.
Y. Wu, B. Yao, Y. Cheng, Y. Rao, Y. Gong, W. Zhang, et al., “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 49–54.
H. Qiu, S. Gao, P. Chen, Z. Li, X. Liu, C. Zhang, et al., “Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film,” Optics Communications, 2016, 366: 275–281.
S. H. Girei, A. A. Shabaneh, H. Ngee-Lim, M. N. Hamidon, M. A. Mahdi, and M. H. Yaacob, “Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water,” Optical Review, 2015, 22(3): 385–392.
J. H. Chen, W. Luo, Z. X. Chen, S. C. Yan, F. Xu, and Y.-Q. Lu, “Mechanical modulation of a hybrid graphene-microfiber structure,” Advanced Optical Materials, 2016, 4(6): 853–857.
G. X. Ni, H. Z. Yang, W. Ji, S. J. Baeck, C. T. Toh, J. H. Ahn, et al., “Tuning optical conductivity of large-scale CVD graphene by strain engineering,” Advanced Materials, 2014, 26(7): 1081–1086.
V. M. Pereira, R. M. Ribeiro, N. M. R. Peres, and A. H. Castro Neto, “Optical properties of strained graphene,” Europhysics Letters, 2011, 92(6): 67001.
Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, et al., “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technology Letters, 2015, 28(4): 383–386.
X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, et al., “Optically sizing single atmospheric particulates with a 10-nm resolution using a strong evanescent field,” Light: Science & Applications, 2018, 7(4): 18003.
F. Gao, H. Liu, C. Sheng, C. Zhu, and S. N. Zhu, “Refractive index sensor based on the leaky radiation of a microfiber,” Optics Express, 2014, 22(10): 12645–12652.
Z. Zhang, J. Pan, Y. Tang, Y. Xu, L. Zhang, Y. Gong, et al., “Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips,” Lab on a Chip, 2020, 20: 2572–2579.
P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Optics Letters, 2005, 30(11): 1273–1275.
G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, and M. Xuan, “Mie scattering-enhanced fiber-optic refractometer,” IEEE Photonics Technology Letters, 2012, 24(8): 658–660.
Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y. F. Xiao, “Single nanoparticle detection using optical microcavities,” Advanced Materials, 2017, 29(12): 1604920.
X. Jolly, V. Serge, M. Fabian, and V. Frank, “Advances in optoplasmonic sensors — combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles,” Nanophotonics, 2018, 7(1): 1–38.
S. Wang, X. Pan, and L. Tong, “Modeling of nanoparticle-induced Rayleigh-Gans scattering for nanofiber optical sensing,” Optics Communications, 2007, 276(2): 293–297.
S. J. Tang, S. Liu, X. C. Yu, Q. Song, Q. Gong, and Y. F. Xiao, “On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects,” Advanced Materials, 2018, 30(25): 1800262.
Y. L. Chen and Q. Gong, “Hybrid plasmonic-photonic mode in a subwavelength fiber for enhanced single-nanoparticle detection,” Physical Review A, 2015, 91(1): 013805.
X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, et al., “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Advanced Materials, 2014, 26(44): 7462–7467.
Z. Wei, Z. Song, X. Zhang, and Z. Meng, “Microparticle detection with optical microfibers,” IEEE Photonics Technology Letters, 2013, 25(6): 568–571.
J. C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, and T. Sylvestre, “Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre,” Nature Communications, 2014, 5(1): 5242.
F. Xu, Z. X. Wu, and Y. Q. Lu, “Nonlinear optics in optical-fiber nanowires and their applications,” Progress in Quantum Electronics, 2017, 55: 35–51.
S. D. Emami, L. H. Jing, M. M. Rahman, F. Abdullah, H. A. Abdul-Rashid, M. M. Dashtabi, et al., “Evolution of surface acoustic waves in an optical microfiber,” IEEE Journal of Quantum Electronics, 2017, 53(5): 1–8.
O. Florez, P. F. Jarschel, Y. A. V. Espinel, C. M. B. Cordeiro, T. P. Mayer Alegre, G. S. Wiederhecker, et al., “Brillouin scattering self-cancellation,” Nature Communications, 2016, 7(1): 1–8.
Y. C. Shi, W. Luo, F. Xu, and Y. Q. Lu, “Photon-phonon interaction in a microfiber induced by optical and electrostrictive forces,” Scientific Reports, 2017, 7: 41849.
M. Cao, H. Li, M. Tang, Y. Mi, L. Huang, and G. Ren, “Forward stimulated Brillouin scattering in optical nanofibers,” Journal of the Optical Society of America B, 2019, 36(8): 2079–2086.
L. Huang, Y. Zhang, Y. Cui, J. Qiu, and X. Liu, “Microfiber-assisted gigahertz harmonic mode-locking in ultrafast fiber laser,” Optics Letters, 2020, 45(17): 4678–4681.
A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, et al., “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica, 2017, 4(10): 1232–1238.
J. Huang, X. Zhong, H. Liang, L. Cheng, J. Li, and B. Guan, “Brillouin scattering from hybrid acoustic wave in a microscaled fiber for gas pressure sensing,” IEEE Photonics Journal, 2017, 9(2): 1–6.
W. Luo, H. Q. Cao, Y. K. Dong, Y. Q. Lu, F. Xu, and G. Brambilla, “Evolution and spatial distribution of Brillouin backscattering associated to hybrid acoustic modes in sub-wavelength silica microfibers,” arXiv preprint: 1807.02774 (2018).
C. Huang, H. Sun, H. Liang, L. Cheng, L. Chen, X. Bao, et al., “Refractive index sensing based on Brillouin scattering in a micro fiber,” Applied Physics Express, 2019, 12(8): 082013.
J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electronics Letters, 1985, 21(13): 569–570.
A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sensors Journal, 2012, 12(5): 885–892.
L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” Journal of the European Optical Society Rapid Publications, 2013, 8: 13030
L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Applied Physics Letters, 2013, 102(20): 201110.
C. Wang, L. Zeng, Z. Li, and D. Li, “Review of optical fibre probes for enhanced Raman sensing,” Journal of Raman Spectroscopy, 2017, 48(8): 1040–1055.
J. Cao, D. Zhao, X. Lei, Y. Liu, and Q. Mao, “One-pot hydrothermal synthesis of silver nanoplates on optical fiber tip for surface-enhanced Raman scattering,” Applied Physics Letters, 2014, 104(20): 201906.
J. Zhang, S. Chen, T. Gong, X. Zhang, and Y. Zhu, “Tapered fiber probe modified by Ag nanoparticles for SERS detection,” Plasmonics, 2016, 11(3): 743–751.
Z. Huang, X. Lei, Y. Liu, Z. Wang, X. Wang, Z. Wang, et al., “Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application,” ACS Applied Materials & Interfaces, 2015, 7(31): 17247–17254.
W. Zhang, Z. Fang, and X. Zhu, “Near-field Raman spectroscopy with aperture tips,” Chemical Reviews, 2017, 117(7): 5095–5109.
B. L. Li, D. R. Li, J. H. Chen, Z. Y. Liu, G. H. Wang, X. P. Zhang, et al., “Hollow core micro-fiber for optical wave guiding and microfluidic manipulation,” Sensors and Actuators B: Chemical, 2018, 262: 953–957.
A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, “Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber,” Optics Express, 2009, 17(24): 21704–21711.
Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors, 2015, 15(3): 4890–4898.
V. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Optics Express, 2007, 15(26): 17891–17901.
S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Optics Express, 2010, 18(9): 9474–9485.
F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Physical Review A, 2005, 72(3): 032509.
H. Nha and W. Jhe, “Cavity quantum electrodynamics for a cylinder: Inside a hollow dielectric and near a solid dielectric cylinder,” Physical Review A, 1997, 56(3): 2213–2220.
V. V. Klimov and M. Ducloy, “Spontaneous emission rate of an excited atom placed near a nanofiber,” Physical Review A, 2004, 69(1): 013812.
T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Analytical and Bioanalytical Chemistry, 2005, 382(4): 918–925.
Q. Yang, H. Wang, S. Chen, X. Lan, H. Xiao, H. Shi, et al., “ Fiber-optic-based micro-probe using hexagonal 1-in-6 fiber configuration for intracellular single-cell pH measurement,” Analytical Chemistry, 2015, 87(14): 7171–7179.
W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science, 1992, 258(5083): 778–781.
J. Lee, H. R. Lee, J. Pyo, Y. Jung, J. Y. Seo, H. G. Ryu, et al., “Quantitative probing of Cu2+ ions naturally present in single living cells,” Advanced Materials, 2016, 28(21): 4071–4076.
T. Vo-Dinh and Y. Zhang, “Single-cell monitoring using fiberoptic nanosensors,” WIREs Nanomedicine and Nanobiotechnology, 2011, 3(1): 79–85.
Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Optics Express, 2017, 25(9): 10434–10440.
L. Xiao, M. D. Grogan, S. G. Leon-Saval, R. Williams, R. England, W. J. Wadsworth, et al., “Tapered fibers embedded in silica aerogel,” Optics Letters, 2009, 34(18): 2724–2726.
L. Xiao, M. D. W. Grogan, W. J. Wadsworth, R. England, and T. A. Birks, “Stable low-loss optical nanofibres embedded in hydrophobic aerogel,” Optics Express, 2011, 19(2): 764–769.
F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Optics Express, 2008, 16(2): 1062–1067.
W. Jin, H. Xuan, C. Wang, W. Jin, and Y. Wang, “Robust microfiber photonic microcells for sensor and device applications,” Optics Express, 2014, 22(23): 28132–28141.
J. Zhu, X. Liu, Q. Shi, T. He, Z. Sun, X. Guo, et al., “Development trends and perspectives of future sensors and MEMS/NEMS,” Micromachines, 2020, 11(1): 7.
R. Soref, “Silicon photonics: A review of recent literature,” Silicon, 2010, 2(1): 1–6.
E. Luan, H. Shoman, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic biosensors using label-free detection,” Sensors, 2018, 18(10): 3519.
J. H. Li, J. H. Chen, and F. Xu, “Sensitive and wearable optical microfiber sensor for human health monitoring,” Advanced Materials Technologies, 2018, 3(12): 1800296.
L. Zhang, J. Pan, Z. Zhang, H. Wu, N. Yao, D. Cai, et al., “Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers,” Opto-Electronic Advances, 2020, 3(03): 190022.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Luo, W., Chen, Y. & Xu, F. Recent Progress in Microfiber-Optic Sensors. Photonic Sens 11, 45–68 (2021). https://doi.org/10.1007/s13320-021-0614-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13320-021-0614-9