Abstract
Below-cloud aerosol scavenging process by precipitation is important for cleaning the polluted aerosols in the atmosphere, and is also a main process for acid rain formation. However, the related physical mechanism has not been well documented and clarified yet. In this paper, we investigated the below-cloud PM2.5 (particulate matter with aerodynamic diameter being 2.5 μm or less) scavenging by different-intensity rains under polluted conditions characterized by high PM2.5 concentrations, based on in-situ measurements from March 2014 to July 2016 in Beijing city. It was found that relatively more intense rainfall events were more efficient in removing the polluted aerosols in the atmosphere. The mean PM2.5 scavenging ratio and its standard deviation (SD) were 5.1% ± 25.7%, 38.5% ± 29.0%, and 50.6% ± 21.2% for light, moderate, and heavy rain events, respectively. We further found that the key impact factors on below-cloud PM2.5 scavenging ratio for light rain events were rain duration and wind speed rather than raindrop size distribution. However, the impacts of rain duration and wind speed on scavenging ratio were not important for moderate and heavy rain events. To our knowledge, this is the first statistical result about the effects of rain intensity, rain duration, and raindrop size distribution on below-cloud scavenging in China.
Similar content being viewed by others
References
American Meteorological Society, cited 2019: “Rain”. Glossary of Meteorology. Available online at https://doi.org/glossary.ametsoc.org/wiki/Rain.
Andronache, C., 2003: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys., 3: 131–143, doi: 10.5194/acp-3-131-2003.
Andronache, C., 2004: Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer. J. Geophys. Res. Atmos., 109, D16, doi: 10.1029/2003jd004050.
Andronache, C., T. Grönholm, L. Laakso, et al., 2006: Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos. Chem. Phys., 6: 4739–4754, doi: 10.5194/acp-6-4739-2006.
Ardon-Dryer, K., Y. W. Huang, and D. J. Cziczo, 2015: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmos. Chem. Phys., 15: 9159–9171, doi: 10.5194/acp-15-9159-2015.
Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11: 1–35, doi: 10.1029/RG011i001p00001.
Bae, S. Y., C. H. Jung, and Y. P. Kim, 2006: Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. J. Aerosol Sci., 37: 1507–1519, doi: 10.1016/j.jaerosci.2006.02.003.
Barmpadimos, I., C. Hueglin, J. Keller, et al., 2011: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys., 11: 1813–1835, doi: 10.5194/acp-11-1813-2011.
Bloemink, H. I., and E. Lanzinger, 2005: Precipitation type from the Thies disdrometer. Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Bucharest, Romania: WMO, 1–7.
Byrne, M. A., and S. G. Jennings, 1993: Scavenging of sub-micrometre aerosol particles by water drops. Atmos. Environ., 27: 2099–2105, doi: 10.1016/0960-1686(93)90039-2.
Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7: 257–262, doi: 10.1038/nclimate3249.
Castro, A., E. Alonso-Blanco, M. González-Colino, et al., 2010: Aerosol size distribution in precipitation events in León, Spain. Atmos. Res., 96: 421–435, doi: 10.1016/j.atmosres. 2010.01.014.
Chate, D. M., 2011: Below-thunderstorm rain scavenging of urban aerosols in the health hazardous modes. Nat. Hazards, 56: 81–91, doi: 10.1007/s11069-010-9550-5.
Chate, D. M., and T. S. Pranesha, 2004: Field studies of scavenging of aerosols by rain events. J. Aerosol Sci., 35: 695–706, doi: 10.1016/j.jaerosci.2003.09.007.
Chate, D. M., P. Murugavel, K. Ali, et al., 2011: Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos. Res., 99: 528–536, doi: 10.1016/j.atmosres. 2010.12.010.
Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91: 215–227, doi: 10.2151/jmsj.2013-208.
Chen, B. J., J. Wang, and D. L. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55: 621–634, doi: 10.1175/jamc-d-15-0127.1.
Chen, B. J., Z. Q. Hu, L. P. Liu, et al., 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122: 11092–11106, doi: 10.1002/2017jd027233.
Chen, R. J., Z. H. Zhao, and H. D. Kan, 2013: Heavy smog and hospital visits in Beijing, China. Am. J. Resp. Crit. Care, 188: 1170–1171, doi: 10.1164/rccm.201304-0678LE.
Croft, B., U. Lohmann, R. V. Martin, et al., 2009: Aerosol sizedependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9: 4653–4675, doi: 10.5194/acp-9-4653-2009.
Davenport, H. M., and L. K. Peters, 1978: Field studies of atmospheric particulate concentration changes during precipitation. Atmos. Environ., 12: 997–1008, doi: 10.1016/0004-6981(78) 90344-X.
de Moraes Frasson, R. P., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101: 237–255, doi: 10.1016/j.atmosres.2011. 02.014.
Feng, H., 2007: A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos. Environ., 41: 6808–6822, doi: 10.1016/j.atmosenv. 2007.04.046.
Feng, X. Y., and S. G. Wang, 2012: Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci., 24: 665–674, doi: 10.1016/S1001-0742(11)60807-3.
Fernández-Raga, M., A. Castro, C. Palencia, et al., 2009: Rain events on 22 October 2006 in León (Spain): Drop size spectra. Atmos. Res., 93: 619–635, doi: 10.1016/j.atmosres. 2008.09.035.
Friedrich, K., S. Higgins, F. J. Masters, et al., 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol., 30: 2063–2080, doi: 10.1175/jtech-d-12-00254.1.
Greenfield, S. M., 1957: Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor., 14: 115–125, doi: 10.1175/1520-0469(1957)014<0115:rsorpm>2.0.co;2.
Guo, L. C., Y. H. Zhang, H. L. Lin, et al., 2016: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut., 215: 195–202, doi: 10.1016/j.envpol.2016.05.003.
Guo, L. H., 2016: Haze and health. Natl. Sci. Rev., 3: 412–413, doi: 10.1093/nsr/nww071.
Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: On the variability of drop size distributions over areas. J. Atmos. Sci., 72: 1386–1397, doi: 10.1175/jas-d-14-0258.1.
Laakso, L., T. Grönholm, Ü. Rannik, et al., 2003: Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ., 37: 3605–3613, doi: 10.1016/S1352-2310(03)00326-1.
Ladino, L., O. Stetzer, B. Hattendorf, et al., 2011: Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J. Atmos. Sci., 68: 1853–1864, doi: 10.1175/jas-d-11-012.1.
Lai, K.-Y., N. Dayan, and M. Kerker, 1978: Scavenging of aerosol particles by a falling water drop. J. Atmos. Sci., 35: 674–682, doi: 10.1175/1520-0469(1978)035<0674:soapba> 2.0.co;2.
Lemaitre, P., A. Querel, M. Monier, et al., 2017: Experimental evidence of the rear capture of aerosol particles by raindrops. Atmos. Chem. Phys., 17: 4159–4176, doi: 10.5194/acp-17-4159-2017.
Liao, H., W. Y. Chang, and Y. Yang, 2015: Climatic effects of air pollutants over China: A review. Adv. Atmos. Sci., 32: 115–139, doi: 10.1007/s00376-014-0013-x.
Luan, T., X. L. Guo, L. J. Guo, et al., 2018: Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18: 203–225, doi: 10.5194/acp-18-203-2018.
Maria, S. F., and L. M. Russell, 2005: Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ. Sci. Technol., 39: 4793–4800, doi: 10.1021/es0491679.
Olszowski, T., 2016: Changes in PM10 concentration due to largescale rainfall. Arab. J. Geosci., 9: 160, doi: 10.1007/s12517-015-2163-2.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht, 720–730.
Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi: 10.1029/2005gl024586.
Quérel, A., P. Lemaitre, M. Monier, et al., 2014a: An experiment to measure raindrop collection efficiencies: Influence of rear capture. Atmos. Meas. Tech., 7: 1321–1330, doi: 10.5194/amt-7-1321-2014.
Quérel, A., M. Monier, A. I. Flossmann, et al., 2014b: The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos. Res., 142: 57–66, doi: 10.1016/j.atmosres. 2013.06.008.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley & Sons, Hoboken, NJ, 932 pp.
Tie, X. X., D. Wu, and G. Brasseur, 2009: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ., 43: 2375–2377, doi: 10.1016/j.atmosenv. 2009.01.036.
Tinsley, B. A., 2010: Electric charge modulation of aerosol scavenging in clouds: Rate coefficients with Monte Carlo simulation of diffusion. J. Geophys. Res. Atmos., 115, D23211, doi: 10.1029/2010jd014580.
Tinsley, B. A., R. P. Rohrbaugh, and M. Hei, 2001: Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res., 59-60, 115–135, doi: 10.1016/s0169-8095(01)00112-0.
Tinsley, B. A., L. M. Zhou, and A. Plemmons, 2006: Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos. Res., 79: 266–295, doi: 10.1016/j.atmosres. 2005.06.004.
Wang, P. K., and H. R. Pruppacher, 1977: An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J. Atmos. Sci., 34: 1664–1669, doi: 10.1175/1520-0469(1977)034<1664:aedote> 2.0.co;2.
Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for belowcloud particle scavenging by rain. Atmos. Chem. Phys., 10: 5685–5705, doi: 10.5194/acp-10-5685-2010.
Wang, X., L. Zhang, and M. D. Moran, 2011: On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain—a numerical investigation using a detailed one-dimensional cloud microphysics model. Atmos. Chem. Phys., 11: 11859–11866, doi: 10.5194/acp-11-11859-2011.
Xu, X. D., X. L. Guo, T. L. Zhao, et al., 2017: Are precipitation anomalies associated with aerosol variations over eastern China? Atmos. Chem. Phys., 17: 8011–8019, doi: 10.5194/acp-17-8011-2017.
Yang, Y., H. Liao, and S. J. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121: 13050–13065, doi: 10.1002/2016 JD025136.
Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2004: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ., 38: 4653–4665, doi: 10.1016/j.atmosenv.2004.05.042.
Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Sci., 37: 203–217, doi: 10.1016/j.jaerosci.2005.04.002.
Zhang, L. M., X. Wang, M. D. Moran, et al., 2013: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys., 13: 10005–10025, doi: 10.5194/acp-13-10005-2013.
Zhang, Y. L., and F. Cao, 2015: Fine particulate matter (PM2.5) in China at a city level. Sci. Rep., 5: 14884, doi: 10.1038/srep 14884.
Zhao, S. P., Y. Yu, J. J. He, et al., 2015: Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China. Atmos. Environ., 102: 70–78, doi: 10.1016/j.atmosenv.2014.11.051.
Zikova, N., and V. Zdimal, 2016: Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus B, 68: 27343, doi: 10.3402/tellusb.v68.27343.
Acknowledgment
The authors highly appreciate the constructive comments from the Editor and two anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY200806001 and GYHY201406001), National Natural Science Foundation of China (41605111), and Research Funds of the Chinese Academy of Meteorological Sciences (2016Z004).
Rights and permissions
About this article
Cite this article
Luan, T., Guo, X., Zhang, T. et al. Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City. J Meteorol Res 33, 126–137 (2019). https://doi.org/10.1007/s13351-019-8079-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13351-019-8079-0