Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Below-cloud aerosol scavenging process by precipitation is important for cleaning the polluted aerosols in the atmosphere, and is also a main process for acid rain formation. However, the related physical mechanism has not been well documented and clarified yet. In this paper, we investigated the below-cloud PM2.5 (particulate matter with aerodynamic diameter being 2.5 μm or less) scavenging by different-intensity rains under polluted conditions characterized by high PM2.5 concentrations, based on in-situ measurements from March 2014 to July 2016 in Beijing city. It was found that relatively more intense rainfall events were more efficient in removing the polluted aerosols in the atmosphere. The mean PM2.5 scavenging ratio and its standard deviation (SD) were 5.1% ± 25.7%, 38.5% ± 29.0%, and 50.6% ± 21.2% for light, moderate, and heavy rain events, respectively. We further found that the key impact factors on below-cloud PM2.5 scavenging ratio for light rain events were rain duration and wind speed rather than raindrop size distribution. However, the impacts of rain duration and wind speed on scavenging ratio were not important for moderate and heavy rain events. To our knowledge, this is the first statistical result about the effects of rain intensity, rain duration, and raindrop size distribution on below-cloud scavenging in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Meteorological Society, cited 2019: “Rain”. Glossary of Meteorology. Available online at https://doi.org/glossary.ametsoc.org/wiki/Rain.

  • Andronache, C., 2003: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys., 3: 131–143, doi: 10.5194/acp-3-131-2003.

    Article  Google Scholar 

  • Andronache, C., 2004: Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer. J. Geophys. Res. Atmos., 109, D16, doi: 10.1029/2003jd004050.

    Article  Google Scholar 

  • Andronache, C., T. Grönholm, L. Laakso, et al., 2006: Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos. Chem. Phys., 6: 4739–4754, doi: 10.5194/acp-6-4739-2006.

    Article  Google Scholar 

  • Ardon-Dryer, K., Y. W. Huang, and D. J. Cziczo, 2015: Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis. Atmos. Chem. Phys., 15: 9159–9171, doi: 10.5194/acp-15-9159-2015.

    Article  Google Scholar 

  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys., 11: 1–35, doi: 10.1029/RG011i001p00001.

    Article  Google Scholar 

  • Bae, S. Y., C. H. Jung, and Y. P. Kim, 2006: Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. J. Aerosol Sci., 37: 1507–1519, doi: 10.1016/j.jaerosci.2006.02.003.

    Article  Google Scholar 

  • Barmpadimos, I., C. Hueglin, J. Keller, et al., 2011: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008. Atmos. Chem. Phys., 11: 1813–1835, doi: 10.5194/acp-11-1813-2011.

    Article  Google Scholar 

  • Bloemink, H. I., and E. Lanzinger, 2005: Precipitation type from the Thies disdrometer. Technical Conference on Meteorological and Environmental Instruments and Methods of Observation. Bucharest, Romania: WMO, 1–7.

    Google Scholar 

  • Byrne, M. A., and S. G. Jennings, 1993: Scavenging of sub-micrometre aerosol particles by water drops. Atmos. Environ., 27: 2099–2105, doi: 10.1016/0960-1686(93)90039-2.

    Article  Google Scholar 

  • Cai, W. J., K. Li, H. Liao, et al., 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Climate Change, 7: 257–262, doi: 10.1038/nclimate3249.

    Article  Google Scholar 

  • Castro, A., E. Alonso-Blanco, M. González-Colino, et al., 2010: Aerosol size distribution in precipitation events in León, Spain. Atmos. Res., 96: 421–435, doi: 10.1016/j.atmosres. 2010.01.014.

    Article  Google Scholar 

  • Chate, D. M., 2011: Below-thunderstorm rain scavenging of urban aerosols in the health hazardous modes. Nat. Hazards, 56: 81–91, doi: 10.1007/s11069-010-9550-5.

    Article  Google Scholar 

  • Chate, D. M., and T. S. Pranesha, 2004: Field studies of scavenging of aerosols by rain events. J. Aerosol Sci., 35: 695–706, doi: 10.1016/j.jaerosci.2003.09.007.

    Article  Google Scholar 

  • Chate, D. M., P. Murugavel, K. Ali, et al., 2011: Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos. Res., 99: 528–536, doi: 10.1016/j.atmosres. 2010.12.010.

    Article  Google Scholar 

  • Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91: 215–227, doi: 10.2151/jmsj.2013-208.

    Article  Google Scholar 

  • Chen, B. J., J. Wang, and D. L. Gong, 2016: Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China. J. Appl. Meteor. Climatol., 55: 621–634, doi: 10.1175/jamc-d-15-0127.1.

    Article  Google Scholar 

  • Chen, B. J., Z. Q. Hu, L. P. Liu, et al., 2017: Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III. J. Geophys. Res. Atmos., 122: 11092–11106, doi: 10.1002/2017jd027233.

    Article  Google Scholar 

  • Chen, R. J., Z. H. Zhao, and H. D. Kan, 2013: Heavy smog and hospital visits in Beijing, China. Am. J. Resp. Crit. Care, 188: 1170–1171, doi: 10.1164/rccm.201304-0678LE.

    Article  Google Scholar 

  • Croft, B., U. Lohmann, R. V. Martin, et al., 2009: Aerosol sizedependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9: 4653–4675, doi: 10.5194/acp-9-4653-2009.

    Article  Google Scholar 

  • Davenport, H. M., and L. K. Peters, 1978: Field studies of atmospheric particulate concentration changes during precipitation. Atmos. Environ., 12: 997–1008, doi: 10.1016/0004-6981(78) 90344-X.

    Article  Google Scholar 

  • de Moraes Frasson, R. P., L. K. da Cunha, and W. F. Krajewski, 2011: Assessment of the Thies optical disdrometer performance. Atmos. Res., 101: 237–255, doi: 10.1016/j.atmosres.2011. 02.014.

    Article  Google Scholar 

  • Feng, H., 2007: A 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos. Environ., 41: 6808–6822, doi: 10.1016/j.atmosenv. 2007.04.046.

    Article  Google Scholar 

  • Feng, X. Y., and S. G. Wang, 2012: Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci., 24: 665–674, doi: 10.1016/S1001-0742(11)60807-3.

    Article  Google Scholar 

  • Fernández-Raga, M., A. Castro, C. Palencia, et al., 2009: Rain events on 22 October 2006 in León (Spain): Drop size spectra. Atmos. Res., 93: 619–635, doi: 10.1016/j.atmosres. 2008.09.035.

    Article  Google Scholar 

  • Friedrich, K., S. Higgins, F. J. Masters, et al., 2013: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J. Atmos. Ocean. Technol., 30: 2063–2080, doi: 10.1175/jtech-d-12-00254.1.

    Article  Google Scholar 

  • Greenfield, S. M., 1957: Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor., 14: 115–125, doi: 10.1175/1520-0469(1957)014<0115:rsorpm>2.0.co;2.

    Article  Google Scholar 

  • Guo, L. C., Y. H. Zhang, H. L. Lin, et al., 2016: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut., 215: 195–202, doi: 10.1016/j.envpol.2016.05.003.

    Article  Google Scholar 

  • Guo, L. H., 2016: Haze and health. Natl. Sci. Rev., 3: 412–413, doi: 10.1093/nsr/nww071.

    Google Scholar 

  • Jameson, A. R., M. L. Larsen, and A. B. Kostinski, 2015: On the variability of drop size distributions over areas. J. Atmos. Sci., 72: 1386–1397, doi: 10.1175/jas-d-14-0258.1.

    Article  Google Scholar 

  • Laakso, L., T. Grönholm, Ü. Rannik, et al., 2003: Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos. Environ., 37: 3605–3613, doi: 10.1016/S1352-2310(03)00326-1.

    Article  Google Scholar 

  • Ladino, L., O. Stetzer, B. Hattendorf, et al., 2011: Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J. Atmos. Sci., 68: 1853–1864, doi: 10.1175/jas-d-11-012.1.

    Article  Google Scholar 

  • Lai, K.-Y., N. Dayan, and M. Kerker, 1978: Scavenging of aerosol particles by a falling water drop. J. Atmos. Sci., 35: 674–682, doi: 10.1175/1520-0469(1978)035<0674:soapba> 2.0.co;2.

    Article  Google Scholar 

  • Lemaitre, P., A. Querel, M. Monier, et al., 2017: Experimental evidence of the rear capture of aerosol particles by raindrops. Atmos. Chem. Phys., 17: 4159–4176, doi: 10.5194/acp-17-4159-2017.

    Article  Google Scholar 

  • Liao, H., W. Y. Chang, and Y. Yang, 2015: Climatic effects of air pollutants over China: A review. Adv. Atmos. Sci., 32: 115–139, doi: 10.1007/s00376-014-0013-x.

    Article  Google Scholar 

  • Luan, T., X. L. Guo, L. J. Guo, et al., 2018: Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys., 18: 203–225, doi: 10.5194/acp-18-203-2018.

    Article  Google Scholar 

  • Maria, S. F., and L. M. Russell, 2005: Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ. Sci. Technol., 39: 4793–4800, doi: 10.1021/es0491679.

    Article  Google Scholar 

  • Olszowski, T., 2016: Changes in PM10 concentration due to largescale rainfall. Arab. J. Geosci., 9: 160, doi: 10.1007/s12517-015-2163-2.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, Dordrecht, 720–730.

  • Qian, Y., D. P. Kaiser, L. R. Leung, et al., 2006: More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett., 33, L01812, doi: 10.1029/2005gl024586.

    Google Scholar 

  • Quérel, A., P. Lemaitre, M. Monier, et al., 2014a: An experiment to measure raindrop collection efficiencies: Influence of rear capture. Atmos. Meas. Tech., 7: 1321–1330, doi: 10.5194/amt-7-1321-2014.

  • Quérel, A., M. Monier, A. I. Flossmann, et al., 2014b: The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles. Atmos. Res., 142: 57–66, doi: 10.1016/j.atmosres. 2013.06.008.

  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley & Sons, Hoboken, NJ, 932 pp.

  • Tie, X. X., D. Wu, and G. Brasseur, 2009: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ., 43: 2375–2377, doi: 10.1016/j.atmosenv. 2009.01.036.

    Article  Google Scholar 

  • Tinsley, B. A., 2010: Electric charge modulation of aerosol scavenging in clouds: Rate coefficients with Monte Carlo simulation of diffusion. J. Geophys. Res. Atmos., 115, D23211, doi: 10.1029/2010jd014580.

    Article  Google Scholar 

  • Tinsley, B. A., R. P. Rohrbaugh, and M. Hei, 2001: Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res., 59-60, 115–135, doi: 10.1016/s0169-8095(01)00112-0.

    Article  Google Scholar 

  • Tinsley, B. A., L. M. Zhou, and A. Plemmons, 2006: Changes in scavenging of particles by droplets due to weak electrification in clouds. Atmos. Res., 79: 266–295, doi: 10.1016/j.atmosres. 2005.06.004.

    Article  Google Scholar 

  • Wang, P. K., and H. R. Pruppacher, 1977: An experimental determination of the efficiency with which aerosol particles are collected by water drops in subsaturated air. J. Atmos. Sci., 34: 1664–1669, doi: 10.1175/1520-0469(1977)034<1664:aedote> 2.0.co;2.

    Article  Google Scholar 

  • Wang, X., L. Zhang, and M. D. Moran, 2010: Uncertainty assessment of current size-resolved parameterizations for belowcloud particle scavenging by rain. Atmos. Chem. Phys., 10: 5685–5705, doi: 10.5194/acp-10-5685-2010.

    Article  Google Scholar 

  • Wang, X., L. Zhang, and M. D. Moran, 2011: On the discrepancies between theoretical and measured below-cloud particle scavenging coefficients for rain—a numerical investigation using a detailed one-dimensional cloud microphysics model. Atmos. Chem. Phys., 11: 11859–11866, doi: 10.5194/acp-11-11859-2011.

    Article  Google Scholar 

  • Xu, X. D., X. L. Guo, T. L. Zhao, et al., 2017: Are precipitation anomalies associated with aerosol variations over eastern China? Atmos. Chem. Phys., 17: 8011–8019, doi: 10.5194/acp-17-8011-2017.

    Article  Google Scholar 

  • Yang, Y., H. Liao, and S. J. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121: 13050–13065, doi: 10.1002/2016 JD025136.

    Article  Google Scholar 

  • Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2004: Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ., 38: 4653–4665, doi: 10.1016/j.atmosenv.2004.05.042.

    Article  Google Scholar 

  • Zhang, L. M., D. V. Michelangeli, and P. A. Taylor, 2006: Influence of aerosol concentration on precipitation formation in low-level, warm stratiform clouds. J. Aerosol Sci., 37: 203–217, doi: 10.1016/j.jaerosci.2005.04.002.

    Article  Google Scholar 

  • Zhang, L. M., X. Wang, M. D. Moran, et al., 2013: Review and uncertainty assessment of size-resolved scavenging coefficient formulations for below-cloud snow scavenging of atmospheric aerosols. Atmos. Chem. Phys., 13: 10005–10025, doi: 10.5194/acp-13-10005-2013.

    Article  Google Scholar 

  • Zhang, Y. L., and F. Cao, 2015: Fine particulate matter (PM2.5) in China at a city level. Sci. Rep., 5: 14884, doi: 10.1038/srep 14884.

    Article  Google Scholar 

  • Zhao, S. P., Y. Yu, J. J. He, et al., 2015: Below-cloud scavenging of aerosol particles by precipitation in a typical valley city, northwestern China. Atmos. Environ., 102: 70–78, doi: 10.1016/j.atmosenv.2014.11.051.

    Article  Google Scholar 

  • Zikova, N., and V. Zdimal, 2016: Precipitation scavenging of aerosol particles at a rural site in the Czech Republic. Tellus B, 68: 27343, doi: 10.3402/tellusb.v68.27343.

    Article  Google Scholar 

Download references

Acknowledgment

The authors highly appreciate the constructive comments from the Editor and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Guo.

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY200806001 and GYHY201406001), National Natural Science Foundation of China (41605111), and Research Funds of the Chinese Academy of Meteorological Sciences (2016Z004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, T., Guo, X., Zhang, T. et al. Below-Cloud Aerosol Scavenging by Different-Intensity Rains in Beijing City. J Meteorol Res 33, 126–137 (2019). https://doi.org/10.1007/s13351-019-8079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8079-0

Key words