Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Environmental Analysis of Land Use and Land Change of Najran City: GIS and Remote Sensing

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study critically analyzes changes in land use and land cover by means of multi-temporal remote sensing of Najran City in Saudi Arabia between 1975 and 2019. A number of remotely sensed data were employed to create multi-maps using: (a) the normalized difference vegetation index; (b) head-up digitizing; and (c) supervised classification of Landsat images using field observation and accuracy assessment, including field verification and Google Earth Professional. Criteria from a well-known technique of environmental assessment, the Building Research Establishment Environmental Assessment Method (BREEAM), were used to critically analyze land use and evaluate levels of sustainability, with particular focus on ecology. Therefore, land around Najran can be characterized as follows: (1) Najran valley; (2) agricultural land; (3) built-up areas; (4) reclaimed land; (5) basement rock; and (6) desert. The results indicate that agricultural land grew from an average of 39.81 km2 (1.07%) in 1975 to 218.51 km2 (5.9%) in 2005, although this was followed by a marked decline between 2005 and 2019. Urban land increased from 1.12 km2 (0.031%) in 1975 to 154.35 km2 (4.13%) in 2019. Furthermore, there was approximately 1289.47 km2 of reclaimed land in 1975 (i.e., 34.64% of the total area study area) but approximately 1151.1 km2 (30.86%) in 2019. There was a small amount of desert (i.e., sand dunes) in the study area, and no change was recorded in the basement rock. This study analyzed these land changes, likening them to BREEAM criteria of ecology and land use. A number of unsustainable practices were potentially resulting in serious land contamination and pollution of both surface and ground water, as well as an increased risk of flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maes, J.; et al.: More green infrastructure is required to maintain ecosystem services under current trends in land-use change in Europe. Landsc. Ecol. 30(3), 517–534 (2015)

    Article  Google Scholar 

  2. Ren, Y.; et al.: Spatially explicit simulation of land use/land cover changes: current coverage and future prospects. Earth Sci. Rev. 190, 398–415 (2019)

    Article  Google Scholar 

  3. Rwanga, S.S.; Ndambuki, J.M.: Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 8(04), 611 (2017)

    Article  Google Scholar 

  4. Liping, C.; Yujun, S.; Saeed, S.: Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—a case study of a hilly area, Jiangle, China. PLoS ONE 13(7), e0200493 (2018)

    Article  Google Scholar 

  5. Khan, M.S.; Suhail, M.; Alharbi, T.: Evaluation of urban growth and land use transformation in Riyadh using Landsat satellite data. Arab. J. Geosci. 11(18), 540 (2018)

    Article  Google Scholar 

  6. UNESCO: Land-use and land-cover change (LULC). [cited 2020 January]. http://portal.unesco.org/es/ev.php-URL_ID=15512&URL_DO=DO_TOPIC&URL_SECTION=201.html (2003). Accessed Jan 2020

  7. Srivastava, P.K.; et al.: Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 50(9), 1250–1265 (2012)

    Article  Google Scholar 

  8. Cegielska, K.; et al.: Land use and land cover changes in post-socialist countries: some observations from Hungary and Poland. Land Use Policy 78, 1–18 (2018)

    Article  Google Scholar 

  9. Tran, D.X.; et al.: Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 124, 119–132 (2017)

    Article  Google Scholar 

  10. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  11. Turner, B.L.; Hydén, G.; Kates, R.W.: Population Growth and Agricultural Change in Africa. University Press of Florida (1993)

  12. Rao, N.D.; et al.: Healthy, affordable and climate-friendly diets in India. Glob. Environ. Change 49, 154–165 (2018)

    Article  Google Scholar 

  13. Lambin, E.F.: Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 21(3), 375–393 (1997)

    Article  Google Scholar 

  14. Lambin, E.F.; et al.: The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change 11(4), 261–269 (2001)

    Article  Google Scholar 

  15. Veldkamp, A. and E.F. Lambin, Predicting land-use change. 2001, Elsevier.

  16. Zeng, F.; et al.: Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ. Pollut. 153(2), 309–314 (2008)

    Article  Google Scholar 

  17. Duraisamy, V.; Bendapudi, R.; Jadhav, A.: Identifying hotspots in land use land cover change and the drivers in a semi-arid region of India. Environ. Monit. Assess. 190(9), 535 (2018)

    Article  Google Scholar 

  18. Dash, C.J.; et al.: Assessment of spatial changes in forest cover and deforestation rate in Eastern Ghats Highlands of Odisha, India. J. Environ. Biol. 39(2), 196–203 (2018)

    Article  Google Scholar 

  19. Elkhrachy, I.: Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran city, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 18(2), 261–278 (2015)

    Google Scholar 

  20. Hereher, M.E.; Al-Shammari, A.M.; Abd Allah, S.E.: Land cover classification of Hail—Saudi Arabia using remote sensing. Int. J. Geosci. 3(02), 349 (2012)

    Article  Google Scholar 

  21. Alqurashi, A.F.; Kumar, L.: Land use and land cover change detection in the Saudi Arabian desert cities of Makkah and Al-Taif using satellite data. Adv. Remote Sens. 3(03), 106 (2014)

    Article  Google Scholar 

  22. Albalawi, E.; Dewan, A.; Corner, R.: Spatio-temporal analysis of land use and land cover changes in arid region of Saudi Arabia. Int. J. 14(44), 73–81 (2018)

    Google Scholar 

  23. Salih, A.: Classification and mapping of land cover types and attributes in Al-Ahsaa Oasis, Eastern Region, Saudi Arabia using Landsat-7 data. J. Remote Sens. GIS 7, 228 (2018)

    Article  Google Scholar 

  24. NU: Najran City: The Geographical Location. [cited 2020 Jan]. https://nu.edu.sa/en/web/renains-of-najran-city (2020). Accessed Jan 2020

  25. Shaoqing, Z.; Lu, X.: The comparative study of three methods of remote sensing image change detection. Int. Arch. Photogramm., Remote Sens. Spat. Inform. Sci. 37, 1595–1598 (2008)

    Google Scholar 

  26. Yan, L.; Roy, D.: Automated crop field extraction from multi-temporal web enabled landsat data. Remote Sens. Environ. 144, 42–64 (2014)

    Article  Google Scholar 

  27. Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation (1978)

  28. El Sayed, M.: Integration of remote sensing & GIS to manage the sustainable development in the Nile valley desert fringes of assiut-sohag governorates, upper Egypt. J. Indian Soc. Remote Sens. 44(5), 759–774 (2016)

    Article  Google Scholar 

  29. BREEAM: BREEAM Technical Standards. [cited 2020 Jan]. https://www.breeam.com/discover/technical-standards/ (2020). Accessed Jan 2020

  30. Addabbo, P., et al.: Contribution of Sentinel-2 Data for Applications in Vegetation Monitoring (2016)

  31. Mondal, A.; et al.: Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 20(1), 61–70 (2017)

    MathSciNet  Google Scholar 

  32. Castaldi, F.; et al.: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 147, 267–282 (2019)

    Article  Google Scholar 

  33. Treitz, P.; Rogan, J.: Remote sensing for mapping and monitoring land-cover and land-use change-an introduction. Prog. Plan. 61(4), 269–279 (2004)

    Article  Google Scholar 

  34. Lu, D.; et al.: Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon. Int. J. Remote Sens. 34(16), 5953–5978 (2013)

    Article  Google Scholar 

  35. Shi, J.-J.; Huang, J.-F.; Zhang, F.: Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. J. Zhejiang Univ. Sci. B 14(10), 934–946 (2013)

    Article  Google Scholar 

  36. Campbell, J.B.; Wynne, R.H.: Introduction to Remote Sensing. Guilford Press, New York (2011)

    Google Scholar 

  37. Lucas, I.; Janssen, F.; van der Wel, F.: Accuracy assessment of satellite derived landcover data: a review. Photogramm. Eng. Remote Sens. 60(4), 426–479 (1994)

    Google Scholar 

  38. Hay, A.: The derivation of global estimates from a confusion matrix. Int. J. Remote Sens. 9(8), 1395–1398 (1988)

    Article  Google Scholar 

  39. Stehman, S.V.; Czaplewski, R.L.: Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sens. Environ. 64(3), 331–344 (1998)

    Article  Google Scholar 

  40. Van Deusen, P.C.: Unbiased estimates of class proportions from thematic maps. Photogramm. Eng. Remote Sens. 62, 409–416 (1996)

    Google Scholar 

  41. Yuan, D.: A simulation comparison of three marginal area estimators for image classification. Photogramm. Eng. Remote Sens. 63(4), 385–391 (1997)

    Google Scholar 

  42. d’Huart, J.; Yohannes, E.: Assessment of the present distribution of the forest hog (Hylochoerus meinertzhageni) in Ethiopia. J. Mt. Ecol. 3, 46–48 (2014)

    Google Scholar 

  43. Clarke, K.C.: Advances in geographic information systems. Comput. Environ. Urban Syst. 10(3–4), 175–184 (1986)

    Article  Google Scholar 

  44. Malczewski, J.: GIS-based multicriteria decision analysis: a survey of the literature. Int. J. Geogr. Inf. Sci. 20(7), 703–726 (2006)

    Article  Google Scholar 

  45. Aish, A.M.; Batelaan, O.; De Smedt, F.: Distributed recharge estimation for groundwater modeling using WetSpass model, case study—Gaza strip, Palestine. Arab. J. Sci. Eng. 35(1), 155 (2010)

    Google Scholar 

  46. Rybaczuk, K.: GIS as an aid to environmental management and community participation in the Negril Watershed, Jamaica. Comput. Environ. Urban Syst. 25(2), 141–165 (2001)

    Article  Google Scholar 

  47. Zeilhofer, P.; Schwenk, L.M.; Onga, N.: A GIS-approach for determining permanent riparian protection areas in Mato Grosso, central Brazil. Appl. Geogr. 31(3), 990–997 (2011)

    Article  Google Scholar 

  48. Teich, M.; Bebi, P.: Evaluating the benefit of avalanche protection forest with GIS-based risk analyses—a case study in Switzerland. For. Ecol. Manag. 257(9), 1910–1919 (2009)

    Article  Google Scholar 

  49. Montanarella, L.; et al.: World’s soils are under threat. Soil 2(1), 79–82 (2016)

    Article  Google Scholar 

  50. Singh, J.S.; Seneviratne, G.: Agro-Environmental Sustainability. Springer, Berlin (2017)

    Book  Google Scholar 

  51. Khan, S.; et al.: Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152(3), 686–692 (2008)

    Article  Google Scholar 

  52. Bruinsma, J.: The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In: Expert Meeting on How to Feed the World in (2009)

  53. Kaushal, S.; Singh, J.S.: Wastewater impact on human health and microorganism-mediated remediation and treatment through technologies. In: Agro-Environmental Sustainability, pp. 235–250. Springer (2017)

Download references

Acknowledgements

The authors would like to express their gratitude to the ministry of education and the deanship of scientific research—Najran University—The Kingdom of Saudi Arabia for their financial and technical support under code number (NU/ESCI/16/078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh H. Alyami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El Aal, A.K., Kamel, M. & Alyami, S.H. Environmental Analysis of Land Use and Land Change of Najran City: GIS and Remote Sensing. Arab J Sci Eng 45, 8803–8816 (2020). https://doi.org/10.1007/s13369-020-04884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04884-x

Keywords