Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Novelty Detection Using Sparse Auto-Encoders to Characterize Structural Vibration Responses

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Deep learning techniques have been increasingly popular for detecting structural novelties in recent years. The deep learning notion originates from the theory of neural networks, and it comprises several machine learning approaches that were primarily created to solve high-dimensional and nonlinear problems due to their great data mapping capabilities. Although the basic ideas of such algorithms were established in the 1960s, their use in damage detection situations is still relatively new. In so doing, the current study assesses the Sparse Auto-Encoder (SAE) deep learning method when applied to the characterization of structural anomalies. The fundamental concept is to employ the SAE to extract significant features from monitored signals and the well-known Support Vector Machine (SVM) to classify those features within the framework of a Structural Health Monitoring (SHM) program. The proposed method is evaluated using vibration data from a numerical beam model and a highway viaduct in Brazil. The results demonstrate that the SAE can extract relevant properties from dynamic data, making it valuable for SHM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yang, Y.B.; Yang, J.P.: State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int. J. Struct. Stab. Dyn. 18(02), 1850025 (2018)

    Article  Google Scholar 

  2. Qing, X.; Li, W.; Wang, Y.; Sun, H.: Piezoelectric transducer-based structural health monitoring for aircraft applications. Sensors 19(3), 545 (2019)

    Article  Google Scholar 

  3. Du, Y.; Zhou, S.; Jing, X.; Peng, Y.; Wu, H.; Kwok, N.: Damage detection techniques for wind turbine blades: A review. Mech. Syst. Signal Process. 141, 106445 (2020)

    Article  Google Scholar 

  4. Bigoni, C.; Zhang, Z.; Hesthaven, J.S.: Systematic sensor placement for structural anomaly detection in the absence of damaged states. Comput. Methods Appl. Mech. Eng. 371, 113315 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chalioris, C.E.; Kytinou, V.K.; Voutetaki, M.E.; Karayannis, C.G.: Flexural damage diagnosis in reinforced concrete beams using a wireless admittance monitoring system - tests and finite element analysis. Sensors 21(3), 679 (2021)

    Article  Google Scholar 

  6. Nunes, L.A.; Amaral, R.P.F.; Barbosa, F.S.; Cury, A.C.: A hybrid learning strategy for structural damage detection. Struct. Health Monit. 20(4), 2143–2160 (2021)

    Article  Google Scholar 

  7. Dan, J.; Feng, W.; Huang, X.; Wang, Y.: Global bridge damage detection using multi-sensor data based on optimized functional echo state networks. Struct. Health Monit. 20(4), 1924–1937 (2021)

    Article  Google Scholar 

  8. Wah, W.S.L.; Chen, Y.T.; Owen, J.S.: A regression-based damage detection method for structures subjected to changing environmental and operational conditions. Eng. Struct. 228, 111462 (2021)

    Article  Google Scholar 

  9. Azim, M.R.; Zhang, H.; Gl, M.: Damage detection of railway bridges using operational vibration data: theory and experimental verifications. Struct. Monitor. Maintenance 7(2), 149–166 (2020)

    Google Scholar 

  10. Ni, P.; Zhou, X.W.H.: Output-only structural damage detection under multiple unknown white noise excitations. Struct. Eng. Mech. 79(3), 327–336 (2021)

    Google Scholar 

  11. Doebling, S.W.; Farrar, C.R.; Prime, M.M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Digest 30(2), 91–105 (1998)

    Article  Google Scholar 

  12. Carden, E.P.; Fanning, P.: Vibration based condition monitoring: a review. Struct. Health Monit. 3(4), 355–377 (2004)

    Article  Google Scholar 

  13. Fan, W.; Qiao, P.: Vibration-based damage identification methods: a review and comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

    Article  Google Scholar 

  14. Das, S.; Saha, P.; Patro, S.K.: Vibration-based damage detection techniques used for health monitoring of structures: A review. J. Civ. Struct. Heal. Monit. 6(3), 477–507 (2016)

    Article  Google Scholar 

  15. Yang, C.; Oyadiji, S.O.: Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage indicator. Mech. Syst. Signal Process. 83, 385–405 (2017)

    Article  Google Scholar 

  16. Liu, G.; Zhai, Y.; Leng, D.; Tian, X.; Mu, W.: Research on structural damage detection of offshore platforms based on grouping modal strain energy. Ocean Eng. 140, 43–49 (2017)

    Article  Google Scholar 

  17. Marrongelli, G.; Gentile, C.; Saisi, A.: Anomaly detection based on automated OMA and mode shape changes: application on a historic arch bridge. In Proceedings of ARCH 2019, 9th International Conference on Arch Bridges, Porto (2019)

  18. Xia, Y.; Chen, B.; Weng, S.; Ni, Y.Q.; Xu, Y.L.: Temperature effect on vibration properties of civil structures: a literature review and case studies. J. Civ. Struct. Heal. Monit. 2(1), 29–46 (2012)

    Article  Google Scholar 

  19. Zhou, G. D.; Yi, T. H.: A summary review of correlations between temperatures and vibration properties of long-span bridges. Mathematical Problems in Engineering, 638209 (2014)

  20. Regni, M.; Arezzo, D.; Carbonari, S.; Gara, F.; Zonta, D.: Effect of environmental conditions on the modal response of a 10-story reinforced concrete tower. Shock and Vibration, 9476146 (2018)

  21. Gillich, G.R.; Furdui, H.; Wahab, M.A.; Korka, Z.I.: A robust damage detection method based on multi-modal analysis in variable temperature conditions. Mech. Syst. Signal Process. 115, 361–379 (2019)

    Article  Google Scholar 

  22. Morales, F.A.O.; Cury, A.; Peixoto, R.A.F.: Analysis of thermal and damage effects over structural modal parameters. Struct. Eng. Mech. 65(1), 43–51 (2019)

    Google Scholar 

  23. Amezquita-Sanchez, J.P.; Adeli, H.: Signal processing techniques for vibration-based health monitoring of smart structures. Arch. Comput. Methods Eng. 23(1), 1–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Almeida Cardoso, R.; Cury, A.; Barbosa, F.; Gentile, C.: Unsupervised real-time SHM technique based on novelty indexes. Struct. Control Health Monit. 26, e2364 (2019)

    Article  Google Scholar 

  25. Salehi, H.; Burgueno, R.: Emerging artificial intelligence methods in structural engineering. Eng. Struct. 171, 170–189 (2018)

    Article  Google Scholar 

  26. Finotti, R.P.; Cury, A.A.; Barbosa, F.S.: An SHM approach using machine learning and statistical indicators extracted from raw dynamic measurements. Latin Am. J. Solids Struct. 16(2), e165 (2019)

    Article  Google Scholar 

  27. Zhang, Z.; Sun, C.: Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating. Structural Health Monitoring, 1475921720927488 (2020)

  28. Namuduri, S.; Narayanan, B.N.; Davuluru, V.S.P.; Burton, L.; Bhansali, S.: Review - deep learning methods for sensor based predictive maintenance and future perspectives for electrochemical sensors. J. Eletrochem. Soc. 167(3), 037552 (2020)

    Article  Google Scholar 

  29. Crémona, C.; Santos, J.: Structural health monitoring as a big-data problem. Struct. Eng. Int. 28(3), 243–254 (2018)

    Article  Google Scholar 

  30. Perez-Ramirez, C.A.; Amezquita-Sanchez, J.P.; Valtierra-Rodriguez, M.; Adeli, H.; Dominguez-Gonzalez, A.; Romero-Troncoso, R.J.: Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings. Eng. Struct. 178, 603–615 (2019)

    Article  Google Scholar 

  31. Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S.: Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection. J. Struct. Eng. 146(5), 04020073 (2020)

    Article  Google Scholar 

  32. Lei, Y.; Zhang, Y.; Mi, J.; Liu, W.; Liu, L.: Detecting structural damage under unknown seismic excitation by deep convolutional neural network with wavelet-based transmissibility data. Structural Health Monitoring, 1475921720923081 (2020)

  33. Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Wang, R.: Development and application of a deep learning-based sparse autoencoder framework for structural damage identification. Struct. Health Monit. 18(1), 103–122 (2019)

    Article  Google Scholar 

  34. Shang, Z.; Sun, L.; Xia, Y.; Zhang, W.: Vibration-based damage detection for bridges by deep convolutional denoising autoencoder. Structural Health Monitoring, 1475921720942836 (2020)

  35. Ma, X.; Lin, Y.; Nie, Z.; Ma, H.: Structural damage identification based on unsupervised feature-extraction via variational auto-encoder. Measurement, 107811 (2020)

  36. Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  37. Cury, A.; Crémona, C.: Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts. Struct. Control. Health Monit. 19(2), 161–186 (2012)

    Article  Google Scholar 

  38. Finotti, R.; Bonifacio, A.; Barbosa, F.; Cury, A.: Evaluation of computational intelligence methods using statistical analysis to detect structural damage. Mecánica Computacional 24, 1389–1397 (2016)

    Google Scholar 

  39. Almeida Cardoso, R.; Cury, A.; Barbosa, F.: Automated real-time damage detection strategy using raw dynamic measurements. Eng. Struct. 196, 109364 (2019)

    Article  Google Scholar 

  40. Luo, H.; Huang, M.; Zhou, Z.: A dual-tree complex wavelet enhanced convolutional LSTM neural network for structural health monitoring of automotive suspension. Measurement 137, 14–27 (2019)

    Article  Google Scholar 

  41. Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J.: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 388, 154–170 (2017)

    Article  Google Scholar 

  42. Bao, Y.; Tang, Z.; Li, H.; Zhang, Y.: Computer vision and deep learning-based data anomaly detection method for structural health monitoring. Struct. Health Monit. 18(2), 401–421 (2019)

    Article  Google Scholar 

  43. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  44. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Verlag, New York (2013)

    MATH  Google Scholar 

  45. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993)

    Article  Google Scholar 

  46. Ng, A.: Sparse autoencoder. CS294A Lecture notes, 72: 1–19 (2011)

  47. Hsu, C.W.; Chang, C.C.; Lin, C.J.: A practical guide to support vector classification. (2003)

  48. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence - IJCAI, 14(2): 1137–1145 (1995)

  49. De Moraes, M.C.; Buth, I.S.; Da Luz, C.A.; Langaro, E.A.; Medeiros, M.H.F.: Alkali-activated cement subject to alkali-aggregate reaction. ACI Mater. J. 118(5), 137–147 (2021)

    Google Scholar 

  50. Japkowicz, N.; Stephen, S.: The class imbalance problem: A systematic study. Intelligent data analysis 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, PROCAD “88881.068530/2014-0”), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Grants “407297/2021-9-PQ” and “311576/2018-4-PQ”), FAPEMIG (Fundação de Amparo à Pesquisa—projects “PPM-00106-17” and “PPM-0001-18”), UFJF (Universidade Federal de Juiz de Fora) and UFPB (Universidade Federal da Paraíba) for the financial support. Furthermore, the help of C. Teodoro, G. Ferreira and M. Araújo in collecting data from the Várzea Nova viaduct is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio de Souza Barbosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finotti, R.P., Barbosa, F.d., Cury, A.A. et al. Novelty Detection Using Sparse Auto-Encoders to Characterize Structural Vibration Responses. Arab J Sci Eng 47, 13049–13062 (2022). https://doi.org/10.1007/s13369-022-06732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06732-6

Keywords