Abstract
Recently, the newly launched Google protect service alerts Android users from installing rooting tools. However, Android users lean toward rooting their Android devices to gain unlimited privileges, which allows them to customize their devices and allows Android Apps to bypass all Android security logging and security system. Rooting is one of the most malicious tactics that is used by Android malware that offers malware with the ability to open backdoor, server ports, access the Android kernel commands, and silently install malicious App and make them irremovable and undetectable. The existing Android malware detection frameworks propose embedded root-exploit code detection within the Android App. However, most frameworks overlook the rooted device detection part. In addition, many evasion techniques are developed to cloak the rooted devices. The above facts pose the challenging tasks of rooting detection and the current studies highlighted a deficiency in root detection research. Hence, this study proposes “Rootector” Android Rooting Detection Framework that uses machine learning classification techniques to detect Android rooted devices. The study proposes a model using machine learning algorithms that previously proves detection performance excellence in different fields of study. The research creates a rooting dataset with more than 13,000 mobile scans, which incorporates physical Android devices as well as simulators. Using the dataset, the study evaluates the performance of the ten machine learning classifiers to identify the best classification model. The study incorporates hyper-parameter optimization techniques to define the optimal machine learning parameters. The study adopts the LASSO (least absolute shrinkage and selection operator) regression algorithm to identify the best minimum number of classification features, which forms a compact dataset. Using LASSO regression, the study proposes a compact model for Android rooting detection. The experimental evaluation results show a very promising performance of Rootector framework with about 98.16% overall accuracy using the full dataset and slightly degraded to 97.13% using the compact dataset.
Similar content being viewed by others
References
Miller, C.: Android Market Share. https://9to5mac.com/2016/08/18/android-ios-smartphone-market-share/ (2016). Accessed 01/04/2017
Statista: Number of apps available in leading app stores as of March 2017. https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/ (2017). Accessed 1-May-2018 2018
Statista: statistics mobile-payment-transaction-volume and 2019 forecast. https://www.statista.com/statistics/226530/mobile-payment-transaction-volume-forecast/ (2018). Accessed 3rd June 208 2018
Oester, P.: Dirty Cow (CVE-2016–5195) (2016).
Zhang, V.: GODLESS Mobile Malware Uses Multiple Exploits to Root Devices. June. http://blog.trendmicro.com/trendlabs-security-intelligence/godless-mobile-malware-uses-multiple-exploits-root-devices/ (2016). Accessed 22/05/2017
NIST: Root Exploit TowelRoot CVE-2014–3153 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3153 (2014). Accessed 1/4/2017
Spreitzer, R.; Griesmayr, S.; Korak, T.; Mangard, S.: Exploiting data-usage statistics for website fingerprinting attacks on android. In: 9th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2016 (2016). https://doi.org/10.1145/2939918.2939922
Geist, D., Nigmatullin, M., Bierens, R.: Jailbreak/Root Detection Evasion Study on iOS and Android. University of Amsterdam (2016)
Evans, N.S.; Benameur, A.; Shen, Y.: All your root checks are belong to us: the sad state of root detection. In: Proceedings of the 13th ACM International Symposium on Mobility Management and Wireless Access (2015). https://doi.org/10.1145/2810362.2810364
Nguyen-Vu, L.; Chau, N.-T.; Kang, S.; Jung, S.: Android rooting: An arms race between evasion and detection. In: Security and Communication Networks 2017 (2017).
Sun, S.-T.; Cuadros, A.; Beznosov, K.: Android rooting: Methods, detection, and evasion. In: Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices (2015). https://doi.org/10.1145/2808117.2808126
Xu, M.; Song, C.; Ji, Y.; Shih, M.W.; Lu, K.; Zheng, C.; Duan, R.; Jang, Y.; Lee, B.; Qian, C.; Lee, S.; Kim, T.: Toward engineering a secure android ecosystem: A survey of existing techniques. ACM Comput. Surv. (2016). https://doi.org/10.1145/2963145
Hao, H.K.; Li, Z.J.; He, Y.Y.; Ma, J.X.: Characterization of android applications with root exploit by using static feature analysis. Lect. Notes Comput. Sci. 9532, 153–165 (2015). https://doi.org/10.1007/978-3-319-27161-3_14
Ham, Y.J.; Choi, W.-B.; Lee, H.-W.: Mobile root exploit detection based on system events extracted from android platform. In: Proceedings of the International Conference on Security and Management (SAM) 2013, p. 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)
Ho, T.-H.; Dean, D.; Gu, X.; Enck, W.: PREC: practical root exploit containment for android devices. In: Proceedings of the 4th ACM conference on Data and application security and privacy (2014). https://doi.org/10.1145/2557547.2557563
Jang, W.J.; Cho, S.W.; Lee, H.W.; Ju, H.I.; Kim, J.N.: Rooting attack detection method on the android-based smart phone. In: 2011 International Conference on Computer Science and Network Technology (Iccsnt), Vols 1–4 (2012). https://doi.org/10.1109/ICCSNT.2011.6182000
Kaspersky: Rooting your Android: Advantages, disadvantages, and snags. https://www.kaspersky.com/blog/android-root-faq/17135/ (2017). Accessed 26th May 2018 2018
Zhang, H.; She, D.; Qian, Z.: Android root and its providers: A double-edged sword. In: 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015 2015-October, pp. 1093–1104 (2015). https://doi.org/10.1145/2810103.2813714
Jiang, X.: Gingermaster: First android malware utilizing a root exploit on android 2.3 (gingerbread). http://www.csc.ncsu.edu/faculty/jiang/GingerMaster (2011). Accessed 21/05/2017
Shao, Y.R.; Luo, X.P.; Qian, C.X.: RootGuard: Protecting rooted android phones. Computer 47(6), 32–40 (2014). https://doi.org/10.1109/MC.2014.163
Admin, M.: Moto X, unlocking the bootloader does void the warranty. https://forums.lenovo.com/t5/Moto-X-Pure-Moto-X-Style/Bootloader-Policy-re-Warranty-for-Pure-Style/m-p/3202233#M5570 (2016). Accessed 20/05/2017
Shen, Y.; Evans, N.; Benameur, A.: Insights into rooted and non-rooted Android mobile devices with behavior analytics. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing (2016). https://doi.org/10.1145/2851613.2851713
Gasparis, I.; Qian, Z.; Song, C.; Krishnamurthy, S.V.: Detecting android root exploits by learning from root providers. In: 26th {USENIX} Security Symposium ({USENIX} Security 17) 2017, pp. 1129–1144. USENIX} Association}
Feizollah, A.; Anuar, N.B.; Salleh, R.; Suarez-Tangil, G.; Furnell, S.: AndroDialysis: analysis of android intent effectiveness in malware detection. Comput. Secur. 65, 121–134 (2017)
Afifi, F.; Anuar, N.B.; Shamshirband, S.; Choo, K.-K.R.: DyHAP: dynamic hybrid ANFIS-PSO approach for predicting mobile malware. PLoS ONE 11(9), e0162627 (2016). https://doi.org/10.1371/journal.pone.0162627
Razak, M.F.A.; Anuar, N.B.; Salleh, R.; Firdaus, A.: The rise of “malware”: Bibliometric analysis of malware study. J. Netw. Comput. Appl. 75, 58–76 (2016). https://doi.org/10.1016/j.jnca.2016.08.022
Yuan, Z.; Lu, Y.; Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016). https://doi.org/10.1109/TST.2016.7399288
You-Joung, H.; Won-Bin, C.; Hyung-Woo, L.; Jaedeok, L.; Jeong Nyeo, K.: Vulnerability monitoring mechanism in Android based smartphone with correlation analysis on event-driven activities. In: 2012 2nd International Conference on Computer Science and Network Technology (ICCSNT), pp. 371–375 (2012). https://doi.org/10.1109/ICCSNT.2012.6525958
MWR-Labs-Drozer: Drozer—A Comprehensive Security and Attack Framework for Android. https://labs.mwrinfosecurity.com/tools/drozer/ (2013). Accessed 1/2/2017
Park, Y.; Lee, C.; Lee, C.; Lim, J.; Han, S.; Park, M.; Cho, S.-J.: RGBDroid: a novel response-based approach to android privilege escalation attacks. In: Presented as part of the 5th USENIX Workshop on Large-Scale Exploits and Emergent Threats (2012).
HTC: Unlock Bootloader - Unlock the possibilities with total customization. http://www.htcdev.com/bootloader (2017). Accessed 20/05/2017
Jaramillo, D.; Katz, N.; Bodin, B.; Tworek, W.; Smart, R.; Cook, T.: Cooperative solutions for bring your own device (BYOD). IBM J. Res. Dev. 57(6), 5:1-5:11 (2013). https://doi.org/10.1147/JRD.2013.2279600
Meng, H.; Thing, V.L.; Cheng, Y.; Dai, Z.; Zhang, L.: A survey of Android exploits in the wild. Comput. Secur. 76, 71–91 (2018)
Xu, W.; Fu, Y.: Own Your Android! Yet Another Universal Root. In: WOOT 2015
Goodin, D.: New type of auto-rooting Android adware is nearly impossible to remove (ShiftyBug). https://arstechnica.com/security/2015/11/new-type-of-auto-rooting-android-adware-is-nearly-impossible-to-remove/ (2015). Accessed 22/05/2017
Hojjati, A.; Adhikari, A.; Struckmann, K.; Chou, E.; Tho Nguyen, T.N.; Madan, K.; Winslett, M.S.; Gunter, C.A.; King, W.P.: Leave your phone at the door: Side channels that reveal factory floor secrets. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security 2016, pp. 883–894. ACM
Spreitzer, R.; Moonsamy, V.; Korak, T.; Mangard, S.: Systematic classification of side-channel attacks: a case study for mobile devices. (2018).
Kadir, A.F.A.; Stakhanova, N.; Ghorbani, A.A.: Understanding android financial malware attacks: taxonomy, characterization, and challenges. J. Cyber Secur. Mob. 7(3), 1–52 (2018)
Ward, B.: How Linux Works: What Every Superuser Should Know. No Starch Press, San Francisco (2014)
Salva, S.; Zafimiharisoa, S.R.: APSET, an Android aPplication SEcurity Testing tool for detecting intent-based vulnerabilities. Int. J. Softw. Tools Technol. Transf. 17(2), 201–221 (2015). https://doi.org/10.1007/s10009-014-0303-8
Luyi, X., Xiaorui, P., Rui, W., Kan, Y., XiaoFeng, W.: Upgrading your android, elevating my malware: privilege escalation through mobile OS updating. In: 2014 IEEE Symposium on Security and Privacy (SP), 18–21 May 2014 2014, pp. 393–408
Valcke, J.: Feature: best practices in mobile security. Biometric Technol. Today 2016, 9–11 (2016). https://doi.org/10.1016/S0969-4765(16)30051-0
Zhang, Z.W.; Wang, Y.W.; Jing, J.W.; Wang, Q.X.; Lei, L.G.: Once root always a threat: analyzing the security threats of android permission system. Inf. Secur. Privacy Acisp 2014(8544), 354–369 (2014). https://doi.org/10.1007/978-3-319-08344-5_23
Amazon: Amazon Web Service - Device Farm. https://aws.amazon.com/device-farm/ (2018). Accessed 2-OCT-2018 2018
PCloudy: PCloudy Device Farm. https://www.pcloudy.com/ (2015). Accessed 2 April 2017
Casati, L., Visconti, A.: The dangers of rooting: data leakage detection in android applications. In: Mobile Information Systems 2018 (2018).
Alam, M., Cheng, Z., Vuong, S.: Context-aware multi-agent based framework for securing Android. In: 2014 International Conference on 2014 Multimedia Computing and Systems (ICMCS), pp. 961–966. IEEE
Genymotion: Genymotion Android Emulator – Fast • Easy • Anywhere. https://www.genymotion.com/ (2014). Accessed 2/4/2017
Player, N.: Nox App Player. https://www.bignox.com/ (2015). Accessed 2/4/2017
Vilkomir, S.: Multi-device coverage testing of mobile applications. Softw. Quality J. (2017). https://doi.org/10.1007/s11219-017-9357-7
Vilkomir, S., Marszalkowski, K., Perry, C., Mahendrakar, S.: Effectiveness of multi-device testing mobile applications. In: 2015 2nd ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 44–47 (2015). https://doi.org/10.1109/MobileSoft.2015.12
Cyanogenmod: Cyanogen OS. http://www.cyanogenmods.org/ (2014). Accessed 26 March 2017
Druffel, A.; Heid, K.: Davinci: Android app analysis beyond Frida via dynamic system call instrumentation. In: International Conference on Applied Cryptography and Network Security 2020, pp. 473–489. Springer
Feizollah, A.; Anuar, N.B.; Salleh, R.; Amalina, F.: Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis. In: 2014 4th International Symposium on Biometrics and Security Technologies, ISBAST 2014 2014, pp. 193–197. Institute of Electrical and Electronics Engineers Inc.
Rastogi, V.; Chen, Y.; Jiang, X.: Catch me if you can: Evaluating android anti-malware against transformation attacks. IEEE Trans. Inf. Forensics Secur. 9(1), 99–108 (2014). https://doi.org/10.1109/TIFS.2013.2290431
Liaw, A.; Wiener, M.: Classification and regression by randomForest. R news 2(3), 18–22 (2002)
Geurts, P.; Ernst, D.; Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Freund, Y.; Schapire, R.E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory (1995). https://doi.org/10.1007/3-540-59119-2_166
Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992). https://doi.org/10.1080/00031305.1992.10475879
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1, 1189–1232 (2001)
Candel, A., Parmar, V., LeDell, E., Arora, A.: Deep Learning with H2O. H2O. ai Inc. (2016).
Ng, S.S.Y., Zhu, W., Tang, W.W.S., Wan, L.C.H., Wat, A.Y.W.: An independent study of two deep learning platforms—H2O and SINGA. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 4–7 Dec. 2016 2016, pp. 1279–1283
Richter, A.N., Khoshgoftaar, T.M., Landset, S., Hasanin, T.: A multi-dimensional comparison of toolkits for machine learning with big data. In: IEEE International Conference on Information Reuse and Integration (IRI), 2015 (2015). https://doi.org/10.1109/IRI.2015.12
Rong, C.: Using mahout for clustering wikipedia's latest articles: A comparison between k-means and fuzzy c-means in the cloud. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom) (2011). https://doi.org/10.1109/CloudCom.2011.86
Esteves, R.M., Pais, R., Rong, C.: K-means clustering in the cloud--a Mahout test. In: 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA) (2011). https://doi.org/10.1109/WAINA.2011.136
Riondato, M., DeBrabant, J.A., Fonseca, R., Upfal, E.: PARMA: a parallel randomized algorithm for approximate association rules mining in MapReduce. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (2012). https://doi.org/10.1145/2396761.2396776
Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S.: Mllib: Machine learning in apache spark. J. Mach. Learn. Res. 17(34), 1–7 (2016)
Morales, G.D.F.; Bifet, A.: SAMOA: scalable advanced massive online analysis. J. Mach. Learn. Res. 16, 149–153 (2015)
Ooi, B.C., Tan, K.-L., Wang, S., Wang, W., Cai, Q., Chen, G., Gao, J., Luo, Z., Tung, A.K., Wang, Y.: SINGA: A distributed deep learning platform. In: Proceedings of the 23rd ACM International Conference on Multimedia (2015). doi:https://doi.org/10.1145/2733373.2807410
Bengio, Y.: Learning deep architectures for AI. Foundations and trends®. Mach. Learn. 2(1), 1–127 (2009). https://doi.org/10.1561/2200000006
Arnold, L., Rebecchi, S., Chevallier, S., Paugam-Moisy, H.: An introduction to deep learning. In: European Symposium on Artificial Neural Networks (ESANN) (2011).
Glorot, X., Bordes, A., Bengio, Y.: Deep Sparse Rectifier Neural Networks. In: Aistats 2011, vol. 106, p. 275
Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y.: On optimization methods for deep learning. (2011)
LeCun, Y.; Bengio, Y.; Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Bergstra, J.; Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)
Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)
Friedman, J., Hastie, T., Tibshirani, R.: glmnet: Lasso and elastic-net regularized generalized linear models. R package version 1(4) (2009).
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 267–288 (1996).
Usai, M.G.; Goddard, M.E.; Hayes, B.J.: LASSO with cross-validation for genomic selection. Genet. Res. 91(06), 427–436 (2009). https://doi.org/10.1017/S0016672309990334
Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R.: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007). https://doi.org/10.1128/AEM.00062-07
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai 1995, vol. 2, pp. 1137–1145. Stanford, CA
Guyon, I.: A scaling law for the validation-set training-set size ratio. AT & T Bell Laboratories, 80 (1997).
Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian Hyperparameter Optimization via Meta-Learning. In: AAAI 2015, pp. 1128–1135
Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. (2011). http://hdl.handle.net/2328/27165
Acknowledgements
The work of the authors was supported by Impact-oriented Interdisciplinary Research Grant (IIRG), Universiti Malaya under grant IIRG001C-2020SAH.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elsersy, W.F., Anuar, N.B. & Razak, M.F.A. ROOTECTOR: Robust Android Rooting Detection Framework Using Machine Learning Algorithms. Arab J Sci Eng 48, 1771–1791 (2023). https://doi.org/10.1007/s13369-022-06949-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-022-06949-5