Abstract
Intrusion Detection Systems (IDSs) have become essential to the sound operations of networks. These systems have the potential to identify and report deviations from normal behaviors, which is crucial for the sustainability and resilience of networks. A large amount of IDSs have been proposed in the literature, but only few of them found success in real-world environments. This study illustrates a taxonomy and a survey on state-of-the-art intrusion detection systems. It also depicts the characteristics of successful IDSs and sheds light on the gaps that need to be resolved for future IDSs to become fit for deployment in realistic environments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
This manuscript has no associated data.
Notes
References
Hajiheidari, S.; Wakil, K.; Badri, M.; Navimipour, N.J.: Intrusion detection systems in the internet of things: a comprehensive investigation. Comput. Netw. 160, 165–191 (2019). https://doi.org/10.1016/j.comnet.2019.05.014
Haseeb, K.; Islam, N.; Almogren, A.; Ud Din, I.: Intrusion prevention framework for secure routing in WSN-based mobile internet of things. IEEE Access 7, 185496–185505 (2019). https://doi.org/10.1109/ACCESS.2019.2960633
Werth, A.; Morris, T.H.: A specification-based intrusion prevention system for malicious payloads. In: Choo, K.-K.R., Morris, T.H., Peterson, G.L. (eds.) National Cyber Summit (NCS) Research Track, pp. 153–168. Springer International Publishing, Cham (2020)
Mishra, P.; Pilli, E.S.; Varadharajan, V.; Tupakula, U.: Intrusion detection techniques in cloud environment: a survey. J. Netw. Comput. Appl. 77, 18–47 (2017). https://doi.org/10.1016/j.jnca.2016.10.015
Young, C.; Zambreno, J.; Olufowobi, H.; Bloom, G.: Survey of automotive controller area network intrusion detection systems. IEEE Design Test 36, 48–55 (2019). https://doi.org/10.1109/MDAT.2019.2899062
Alkadi, O.; Moustafa, N.; Turnbull, B.: A review of intrusion detection and blockchain applications in the cloud: approaches, challenges and solutions. IEEE Access 8, 104893–104917 (2020). https://doi.org/10.1109/ACCESS.2020.2999715
Zhou, J.; Gandomi, A.H.; Chen, F.; Holzinger, A.: Evaluating the quality of machine learning explanations: a survey on methods and metrics. Electronics 10, 593 (2021). https://doi.org/10.3390/electronics10050593
Hossin, M.; Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5, 1 (2015)
He, W.; He, Y.; Li, B.; Zhang, C.: A naive-Bayes-based fault diagnosis approach for analog circuit by using image-oriented feature extraction and selection technique. IEEE Access 8, 5065–5079 (2020). https://doi.org/10.1109/ACCESS.2018.2888950
Halbersberg, D.; Wienreb, M.; Lerner, B.: Joint maximization of accuracy and information for learning the structure of a Bayesian network classifier. Mach. Learn. 109, 1039–1099 (2020). https://doi.org/10.1007/s10994-020-05869-5
Tubishat, M.; Alswaitti, M.; Mirjalili, S.; Al-Garadi, M.A.; Alrashdan, M.T.; Rana, T.A.: Dynamic butterfly optimization algorithm for feature selection. IEEE Access 8, 194303–194314 (2020). https://doi.org/10.1109/ACCESS.2020.3033757
Jia, H.; Xing, Z.; Song, W.: A new hybrid seagull optimization algorithm for feature selection. IEEE Access 7, 49614–49631 (2019)
Abualigah, L.M.; Khader, A.T.; Hanandeh, E.S.: A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J. Comput. Sci. 25, 456–466 (2018)
Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J.: Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Trans. Cybern. 50, 3840–3854 (2020)
Hasan, N.W.; Saudi, A.S.; Khalil, M.I.; Abbas, H.M.: A genetic algorithm approach to automate architecture design for acoustic scene classification. IEEE Trans. Evolut. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3185543
Xue, Y.; Xue, B.; Zhang, M.: Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans. Knowl. Discov. Data (TKDD) 13, 1–27 (2019)
Xue, Y.; Zhu, H.; Liang, J.; Słowik, A.: Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification. Knowl.-Based Syst. 227, 107218 (2021)
Jadhav, S.; He, H.; Jenkins, K.: Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft Comput. 69, 541–553 (2018)
Mirjalili, S.; Song Dong, J.; Sadiq, A.S.; Faris, H.: Genetic algorithm: theory, literature review, and application in image reconstruction. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Nature-Inspired Optimizers, pp. 69–85. Springer, Cham (2020)
Nasiri, J.; Khiyabani, F.M.: A whale optimization algorithm (WOA) approach for clustering. Cogent Math. Stat. 5, 1483565 (2018)
Valayapalayam Kittusamy, S.R.; Elhoseny, M.; Kathiresan, S.: An enhanced whale optimization algorithm for vehicular communication networks. Int. J. Commun. Syst. 35, e3953 (2022)
Hajimirzaei, B.; Navimipour, N.J.: Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm. ICT Express 5, 56–59 (2019)
Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A.: A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408, 189–215 (2020). https://doi.org/10.1016/j.neucom.2019.10.118
Ferrag, M.A.; Maglaras, L.; Ahmim, A.; Derdour, M.; Janicke, H.: RDTIDS: rules and decision tree-based intrusion detection system for internet-of-things networks. Future Internet 12, 44 (2020)
Khraisat, A.; Gondal, I.; Vamplew, P.: An anomaly intrusion detection system using C5 decision tree classifier. In: Pacific–Asia Conference on Knowledge Discovery and Data Mining, pp. 149–155. Springer (2018)
Kasongo, S.M.; Sun, Y.: Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J. Big Data 7, 1–20 (2020)
Resende, P.A.A.; Drummond, A.C.: A survey of random forest based methods for intrusion detection systems. ACM Comput. Surv. (CSUR) 51, 1–36 (2018)
Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E.: A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 134, 93–101 (2019)
Liu, G.; Zhao, H.; Fan, F.; Liu, G.; Xu, Q.; Nazir, S.: An enhanced intrusion detection model based on improved KNN in WSNs. Sensors 22, 1407 (2022)
Ding, H.; Chen, L.; Dong, L.; Fu, Z.; Cui, X.: Imbalanced data classification: a KNN and generative adversarial networks-based hybrid approach for intrusion detection. Future Gener. Comput. Syst. 131, 240–254 (2022)
Sha’Abani, M.; Fuad, N.; Jamal, N.; Ismail, M.: KNN and SVM classification for EEG: a review. In: ECCE 2019, pp. 555–565 (2020)
Adithiyaa, T.; Chandramohan, D.; Sathish, T.: Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today: Proc. 21, 1000–1007 (2020)
Abu Alfeilat, H.A.; Hassanat, A.B.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.S.: Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big Data 7, 221–248 (2019)
Song, H.M.; Woo, J.; Kim, H.K.: In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun. 21, 100198 (2020)
Lohiya, R.; Thakkar, A.: Intrusion detection using deep neural network with antirectifier layer. In: Applied Soft Computing and Communication Networks, pp. 89–105. Springer (2021)
Choraś, M.; Pawlicki, M.: Intrusion detection approach based on optimised artificial neural network. Neurocomputing 452, 705–715 (2021)
Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U.: Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 7, 158820–158846 (2019)
Marugán, A.P.; Márquez, F.P.G.; Perez, J.M.P.; Ruiz-Hernández, D.: A survey of artificial neural network in wind energy systems. Appl. Energy 228, 1822–1836 (2018)
Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A.: Application of artificial neural networks to photovoltaic fault detection and diagnosis: a review. Renew. Sustain. Energy Rev. 138, 110512 (2021)
Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H.: State-of-the-art in artificial neural network applications: a survey. Heliyon 4, e00938 (2018). https://doi.org/10.1016/j.heliyon.2018.e00938
Baldi, P.; Vershynin, R.: The capacity of feedforward neural networks. Neural Netw. 116, 288–311 (2019)
Ding, B.; Qian, H.; Zhou, J.: Activation functions and their characteristics in deep neural networks. In: Chinese Control And Decision Conference (CCDC) 2018, pp. 1836–1841 (2018). https://doi.org/10.1109/CCDC.2018.8407425
Zhang, H.; Weng, T.-W.; Chen, P.-Y.; Hsieh, C.-J.; Daniel, L.: Efficient neural network robustness certification with general activation functions. Adv. Neural Inf. Process. Syst. 31, 1–10 (2018)
Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.-L.; Chen, S.-C.; Iyengar, S.S.: A survey on deep learning: algorithms, techniques, and applications. ACM Compu. Surv. (CSUR) 51, 1–36 (2018)
Taud, H.; Mas, J.: Multilayer perceptron (MLP). In: Camacho Olmedo, M., Paegelow, M., Mas, J.F., Escobar, F. (eds.) Geomatic Approaches for Modeling Land Change Scenarios, pp. 451–455. Springer, Cham (2018)
Khishe, M.; Mosavi, M.; Moridi, A.: Chaotic fractal walk trainer for sonar data set classification using multi-layer perceptron neural network and its hardware implementation. Appl. Acoust. 137, 121–139 (2018)
Pano-Azucena, A.D.; Tlelo-Cuautle, E.; Tan, S.X.-D.; Ovilla-Martinez, B.; de la Fraga, L.G.: FPGA-based implementation of a multilayer perceptron suitable for chaotic time series prediction. Technologies 6, 90 (2018)
Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al.: Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018)
Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3084827
Yu, Y.; Si, X.; Hu, C.; Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019). https://doi.org/10.1162/neco_a_01199
Hewamalage, H.; Bergmeir, C.; Bandara, K.: Recurrent neural networks for time series forecasting: current status and future directions. Int. J. Forecast. 37, 388–427 (2021). https://doi.org/10.1016/j.ijforecast.2020.06.008
Wu, Z.; Christofides, P.D.: Economic machine-learning-based predictive control of nonlinear systems. Mathematics 7, 494 (2019)
Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404, 132306 (2020). https://doi.org/10.1016/j.physd.2019.132306
Dong, G.; Liao, G.; Liu, H.; Kuang, G.: A review of the autoencoder and its variants: a comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geosci. Remote Sens. Mag. 6, 44–68 (2018). https://doi.org/10.1109/MGRS.2018.2853555
Baur, C.; Denner, S.; Wiestler, B.; Navab, N.; Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021). https://doi.org/10.1016/j.media.2020.101952
Zhang, N.; Ding, S.; Zhang, J.; Xue, Y.: An overview on restricted Boltzmann machines. Neurocomputing 275, 1186–1199 (2018). https://doi.org/10.1016/j.neucom.2017.09.065
Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8, 292 (2019)
He, X.; Zhao, K.; Chu, X.: AutoML: a survey of the state-of-the-art. Knowl.-Based Syst. 212, 106622 (2021)
Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G.: A survey of deep learning and its applications: a new paradigm to machine learning. Arch. Comput. Methods. Eng. 27, 1071–1092 (2020)
Axelsson, S.: Intrusion detection systems: a survey and taxonomy. Technical Report, Citeseer (2000)
Lazarevic, A.; Kumar, V.; Srivastava, J.: Intrusion detection: a survey. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats, pp. 19–78. Springer, Boston, MA (2005)
Gyanchandani, M.; Rana, J.; Yadav, R.: Taxonomy of anomaly based intrusion detection system: a review. Int. J. Sci. Res. Publ. 2, 1–13 (2012)
Vasilomanolakis, E.; Karuppayah, S.; Mühlhäuser, M.; Fischer, M.: Taxonomy and survey of collaborative intrusion detection. ACM Comput. Surv. (CSUR) 47, 1–33 (2015)
Hodo, E.; Bellekens, X.; Hamilton, A.; Tachtatzis, C.; Atkinson, R.: Shallow and deep networks intrusion detection system: a taxonomy and survey. arXiv preprint arXiv:1701.02145 (2017)
Hindy, H.; Brosset, D.; Bayne, E.; Seeam, A.; Tachtatzis, C.; Atkinson, R.; Bellekens, X.: A taxonomy and survey of intrusion detection system design techniques, network threats and datasets. arXiv preprint arXiv:1806.03517 (2018)
Aldweesh, A.; Derhab, A.; Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowl.-Based Syst. 189, 105124 (2020)
Masdari, M.; Khezri, H.: A survey and taxonomy of the fuzzy signature-based intrusion detection systems. Appl. Soft Comput. 92, 106301 (2020)
Baddar, S.W.A.-H.; Merlo, A.; Migliardi, M.: Anomaly detection in computer networks: a state-of-the-art review. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 5, 29–64 (2014)
Al-Othman, Z.; Alkasassbeh, M.; Baddar, S.A.-H.: A state-of-the-art review on IoT botnet attack detection. arXiv preprint arXiv:2010.13852 (2020)
Rajasegarar, S.; Leckie, C.; Palaniswami, M.: Anomaly detection in wireless sensor networks. IEEE Wirel. Commun. 15, 34–40 (2008)
Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1–22 (2019)
Liu, H.; Lang, B.: Machine learning and deep learning methods for intrusion detection systems: a survey. Appl. Sci. 9, 4396 (2019)
Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P.: Network intrusion detection for IoT security based on learning techniques. IEEE Commun. Surv. Tutor. 21, 2671–2701 (2019)
Baheti, R.; Gill, H.: Cyber-physical systems. The impact of control technology. Open J. Soc. Sci. Sci. Res. Publ. 12, 161–166 (2011)
Luo, Y.; Xiao, Y.; Cheng, L.; Peng, G.; Yao, D.D.: Deep learning-based anomaly detection in cyber-physical systems: progress and opportunities. ACM Comput. Surv. (2021). https://doi.org/10.1145/3453155
Lippmann, R.; Haines, J.W.; Fried, D.J.; Korba, J.; Das, K.: The DARPA off-line intrusion detection evaluation. Comput. Netw. 34(2000), 579–595 (1999)
Cup, K.: Data/the UCI KDD Archive, Information and Computer Science. University of California, Irvine (1999)
Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A.: A detailed analysis of the KDD cup 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6. IEEE 2009 (2009)
Shannon, C.; Moore, D.: The CAIDA dataset on the Witty Worm-March 19–24, 2004,(collection), Online, March 2004. http://www.caida.org/data/passive/witty_worm_dataset.xml (2004)
Sangster, B.; O’Connor, T.; Cook, T.; Fanelli, R.; Dean, E.; Morrell, C.; Conti, G.J.: Toward instrumenting network warfare competitions to generate labeled datasets. In: CSET (2009)
Song, J.; Takakura, H.; Okabe, Y.; Eto, M.; Inoue, D.; Nakao, K.: Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, pp. 29–36 (2011)
Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31, 357–374 (2012)
Al-Kasassbeh, M.; Al-Naymat, G.; Al-Hawari, E.: Towards generating realistic SNMP-MIB dataset for network anomaly detection. Int. J. Comput. Sci. Inf. Secur. 14, 1162 (2016)
Alkasassbeh, M.; Al-Naymat, G.; Hassanat, A.B.; Almseidin, M.: Detecting distributed denial of service attacks using data mining techniques. Int. J. Adv. Comput. Sci. Appl. 7, 436–445 (2016)
Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp 1, 108–116 (2018)
Kostas, K.: Anomaly detection in networks using machine learning. Res. Proposal 23, 343 (2018)
Kenkre, P.S.; Pai, A.; Colaco, L.: Real time intrusion detection and prevention system. In: Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, pp. 405–411. Springer (2015)
Sou, S.-I.; Lin, C.-S.: Random packet inspection scheme for network intrusion prevention in LTE core networks. IEEE Trans. Veh. Technol. 66, 8385–8397 (2017)
Jiang, N.; Cao, J.; Jin, Y.; Li, L.E.; Zhang, Z.-L.: Identifying suspicious activities through DNS failure graph analysis. In: The 18th IEEE International Conference on Network Protocols, pp. 144–153. IEEE (2010)
Karapistoli, E.; Economides, A.A.: ADLU: a novel anomaly detection and location-attribution algorithm for UWB wireless sensor networks. EURASIP J. Inf. Secur. 2014, 1–12 (2014)
Wang, Y.; Meng, W.; Li, W.; Li, J.; Liu, W.-X.; Xiang, Y.: A fog-based privacy-preserving approach for distributed signature-based intrusion detection. J. Parallel Distrib. Comput. 122, 26–35 (2018)
Park, H.-A.; Lee, D.H.; Lim, J.; Cho, S.H.: PPIDS: privacy preserving intrusion detection system. In: Pacific–Asia Workshop on Intelligence and Security Informatics, pp. 269–274. Springer (2007)
Kumar, S.; Sehgal, R. K.; Chamotra, S.: A framework for botnet infection determination through multiple mechanisms applied on honeynet data. In: 2016 Second International Conference on Computational Intelligence & Communication Technology (CICT), pp. 6–13. IEEE (2016)
Kondra, J.R.; Bharti, S.K.; Mishra, S.K.; Babu, K.S.: Honeypot-based intrusion detection system: a performance analysis. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 2347–2351. IEEE (2016)
Sharma, S.: Detection and analysis of network & application layer attacks using Maya honeypot. In: 6th International Conference-Cloud System and Big Data Engineering (Confluence), pp. 259–262. IEEE 2016 (2016)
Vasilomanolakis, E.; Srinivasa, S.; Cordero, C.G.; Mühlhäuser, M.: Multi-stage attack detection and signature generation with ICS honeypots. In: NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, pp. 1227–1232. IEEE (2016)
Tyagi, R.; Paul, T.; Manoj, B.; Thanudas, B.: A novel HTTP botnet traffic detection method. In: Annual IEEE India Conference (INDICON), pp. 1–6. IEEE 2015 (2015)
Jadidi, Z.; Muthukkumarasamy, V.; Sithirasenan, E.; Singh, K.: A probabilistic sampling method for efficient flow-based analysis. J. Commun. Netw. 18, 818–825 (2016)
Kakavand, M.; Mustapha, A.; Tan, Z.; Yazdani, S.F.; Arulsamy, L.: O-ADPI: online adaptive deep-packet inspector using Mahalanobis distance map for web service attacks classification. IEEE Access 7, 167141–167156 (2019)
Ahmed, M.E.; Ullah, S.; Kim, H.: Statistical application fingerprinting for DDOS attack mitigation. IEEE Trans. Inf. Forensics Secur. 14, 1471–1484 (2018)
Dutt, I.; Borah, S.; Maitra, I.K.: Immune system based intrusion detection system (IS-IDS): a proposed model. IEEE Access 8, 34929–34941 (2020)
Resende, P.A.A.; Drummond, A.C.: Adaptive anomaly-based intrusion detection system using genetic algorithm and profiling. Secur. Priv. 1, e36 (2018)
Chawla, A.; Lee, B.; Fallon, S.; Jacob, P.: Host based intrusion detection system with combined CNN/RNN model. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 149–158. Springer (2018)
Atefi, K.; Yahya, S.; Rezaei, A.; Hashim, S.H.B.M.: Anomaly detection based on profile signature in network using machine learning technique. In: IEEE Region 10 Symposium (TENSYMP), pp. 71–76. IEEE 2016 (2016)
Yan, J.; Jin, D.; Lee, C.W.; Liu, P.: A comparative study of off-line deep learning based network intrusion detection. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 299–304. IEEE (2018)
Mylavarapu, G.; Thomas, J.; Kumar TK, A.: Real-time hybrid intrusion detection system using apache storm. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, pp. 1436–1441. IEEE (2015)
Van, N.T.T.; Thinh, T.N.: Accelerating anomaly-based ids using neural network on GPU. In: International Conference on Advanced Computing and Applications (ACOMP), pp. 67–74. IEEE 2015 (2015)
Kumar, G.S.: Real time and offline network intrusion detection using improved decision tree algorithm. Int. J. Comput. Appl. 975, 8887 (2012)
Jongsuebsuk, P.; Wattanapongsakorn, N.; Charnsripinyo, C.: Real-time intrusion detection with fuzzy genetic algorithm. In: 2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 1–6. IEEE (2013)
Kadam, P.U.; Deshmukh, M.: Real-time intrusion detection with genetic, fuzzy, pattern matching algorithm, In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 753–758. IEEE (2016)
Goeschel, K.: Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector machines, decision trees, and naive Bayes for off-line analysis. In: SoutheastCon 2016, pp. 1–6. IEEE (2016)
Seo, S.; Park, S.; Kim, J.: Improvement of network intrusion detection accuracy by using restricted Boltzmann machine. In: 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN), pp. 413–417. IEEE (2016)
Nie, L.; Ning, Z.; Wang, X.; Hu, X.; Cheng, J.; Li, Y.: Data-driven intrusion detection for intelligent internet of vehicles: a deep convolutional neural network-based method. IEEE Trans. Netw. Sci. Eng. 7, 2219–2230 (2020)
Moustafa, N.; Turnbull, B.; Choo, K.-K.R.: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things. IEEE Internet Things J. 6, 4815–4830 (2018)
Shafiq, M.; Tian, Z.; Bashir, A.K.; Du, X.; Guizani, M.: CorrAUC: a malicious bot-IoT traffic detection method in IoT network using machine-learning techniques. IEEE Internet Things J. 8, 3242–3254 (2020)
Yang, J.; Lim, H.: Deep learning approach for detecting malicious activities over encrypted secure channels. IEEE Access 9, 39229–39244 (2021)
Messabi, K.A.; Aldwairi, M.; Yousif, A.A.; Thoban, A.; Belqasmi, F.: Malware detection using DNS records and domain name features. In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, p. 29. ACM (2018)
Singh, M.; Singh, M.; Kaur, S.: Detecting bot-infected machines using DNS fingerprinting. Digit. Investig. 28, 14–33 (2019)
Jiang, J.; Chen, J.; Choo, K.-K.R.; Liu, C.; Liu, K.; Yu, M.; Wang, Y.: A deep learning based online malicious URL and DNS detection scheme. In: International Conference on Security and Privacy in Communication Systems, pp. 438–448. Springer (2017)
Satam, P.; Alipour, H.; Al-Nashif, Y.; Hariri, S.: DNS-IDS: securing DNS in the cloud era. In: 2015 International Conference on Cloud and Autonomic Computing, pp. 296–301. IEEE (2015)
Hoang, X.; Nguyen, Q.: Botnet detection based on machine learning techniques using DNS query data. Future Internet 10, 43 (2018)
Khan, M.A.: HCRNNIDS: Hybrid convolutional recurrent neural network-based network intrusion detection system. Processes 9, 834 (2021)
Aslahi-Shahri, B.; Rahmani, R.; Chizari, M.; Maralani, A.; Eslami, M.; Golkar, M.J.; Ebrahimi, A.: A hybrid method consisting of GA and SVM for intrusion detection system. Neural Comput. Appl. 27, 1669–1676 (2016)
Almashhadani, A.O.; Kaiiali, M.; Sezer, S.; O’Kane, P.: A multi-classifier network-based crypto ransomware detection system: a case study of locky ransomware. IEEE Access 7, 47053–47067 (2019)
Ma, C.; Du, X.; Cao, L.: Analysis of multi-types of flow features based on hybrid neural network for improving network anomaly detection. IEEE Access 7, 148363–148380 (2019)
Kasongo, S.M.; Sun, Y.: A deep learning method with filter based feature engineering for wireless intrusion detection system. IEEE Access 7, 38597–38607 (2019)
Mendonça, R.V.; Teodoro, A.A.; Rosa, R.L.; Saadi, M.; Melgarejo, D.C.; Nardelli, P.H.; Rodríguez, D.Z.: Intrusion detection system based on fast hierarchical deep convolutional neural network. IEEE Access 9, 61024–61034 (2021)
Mazini, M.; Shirazi, B.; Mahdavi, I.: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms. J. King Saud Univ.-Comput. Inf. Sci. 31, 541–553 (2019)
Gnanaprasanambikai, L.; Munusamy, N.: Data pre-processing and classification for traffic anomaly intrusion detection using NSLKDD dataset. Cybern. Inf. Technol. 18, 111–119 (2018)
Viegas, E.; Santin, A.; Bessani, A.; Neves, N.: BigFlow: real-time and reliable anomaly-based intrusion detection for high-speed networks. Future Gener. Comput. Syst. 93, 473–485 (2019)
Haripriya, L.; Jabbar, M.A.: Role of machine learning in intrusion detection system, In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 925–929. IEEE (2018)
Kim, K.; Aminanto, M.E.: Deep learning in intrusion detection perspective: overview and further challenges. In: International Workshop on Big Data and Information Security (IWBIS), pp. 5–10. IEEE 2017 (2017)
Masduki, B.W.; Ramli, K.: Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization. In: 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 397–402. IEEE (2016)
Masduki, B.W.; Ramli, K.; Saputra, F.A.; Sugiarto, D.: Study on implementation of machine learning methods combination for improving attacks detection accuracy on intrusion detection system (IDS). In: 2015 International Conference on Quality in Research (QiR), pp. 56–64. IEEE (2015)
Poongothai, T.; Duraiswamy, K.: Intrusion detection in mobile AdHoc networks using machine learning approach. In: International Conference on Information Communication and Embedded Systems (ICICES2014), pp. 1–5. IEEE (2014)
Alothman, Z.; Alkasassbeh, M.; Al-Haj Baddar, S.: An efficient approach to detect IoT botnet attacks using machine learning. J. High Speed Netw. 26(3), 241–254 (2020)
Al-Kasassbeh, M.; Abbadi, M.A.; Al-Bustanji, A.M.: LightGBM algorithm for malware detection. In: Science and Information Conference, pp. 391–403. Springer (2020)
Al-Kasassbeh, M.; Almseidin, M.; Alrfou, K.; Kovacs, S.: Detection of IoT-botnet attacks using fuzzy rule interpolation. J. Intell. Fuzzy Syst. 39, 421–431 (2020)
Wei, L.; Zhong-Ming, Y.; Ya-Ping, C.; Bin, Z.: A clustering algorithm oriented to intrusion detection. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 862–865. IEEE (2017)
Karami, A.: An anomaly-based intrusion detection system in presence of benign outliers with visualization capabilities. Expert Syst. Appl. 108, 36–60 (2018)
Jirachan, T.; Piromsopa, K.: Applying KSE-test and K-means clustering towards scalable unsupervised intrusion detection. In: 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 82–87. IEEE (2015)
Kotani, G.; Sekiya, Y.: Unsupervised scanning behavior detection based on distribution of network traffic features using robust autoencoders. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 35–38. IEEE (2018)
Zhang, J.; Jones, K.; Song, T.; Kang, H.; Brown, D.E.: Comparing unsupervised learning approaches to detect network intrusion using NetFlow data. In: Systems and Information Engineering Design Symposium (SIEDS), pp. 122–127. IEEE 2017 (2017)
Alom, M.Z.; Taha, T.M.: Network intrusion detection for cyber security using unsupervised deep learning approaches. In: IEEE National Aerospace and Electronics Conference (NAECON), pp. 63–69. IEEE 2017 (2017)
Hassan, M.M.; Gumaei, A.; Alsanad, A.; Alrubaian, M.; Fortino, G.: A hybrid deep learning model for efficient intrusion detection in big data environment. Inf. Sci. 513, 386–396 (2020)
Vikram, A., et al.: Anomaly detection in network traffic using unsupervised machine learning approach. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 476–479. IEEE (2020)
Verkerken, M.; D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F.: Unsupervised machine learning techniques for network intrusion detection on modern data. In: 4th Cyber Security in Networking Conference (CSNet), pp. 1–8. IEEE 2020 (2020)
Zavrak, S.; Iskefiyeli, M.: Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access 8, 108346–108358 (2020)
Sutton, R.S.; Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)
Vieira, K.M.; Schubert, F.; Geronimo, G.A.; de Souza Mendes, R.; Westphall, C.B.: Autonomic intrusion detection system in cloud computing with big data. In: Proceedings of the International Conference on Security and Management (SAM), The Steering Committee of The World Congress in Computer Science, Computer ..., p. 1 (2014)
Chatterjee, M.; Namin, A.S.: Deep reinforcement learning for detecting malicious websites. arXiv preprint arXiv:1905.09207 (2019)
Xiao, L.; Li, Y.; Liu, G.; Li, Q.; Zhuang, W.: Spoofing detection with reinforcement learning in wireless networks. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–5. IEEE 2015 (2015)
Otoum, S.; Kantarci, B.; Mouftah, H.: Empowering reinforcement learning on big sensed data for intrusion detection. In: ICC 2019—2019 IEEE International Conference on Communications (ICC), pp. 1–7. IEEE (2019)
Tang, C.; Xiang, Y.; Wang, Y.; Qian, J.; Qiang, B.: Detection and classification of anomaly intrusion using hierarchy clustering and SVM. Secur. Commun. Netw. 9, 3401–3411 (2016)
Zaman, M.; Lung, C.-H.: Evaluation of machine learning techniques for network intrusion detection. In: NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5. IEEE (2018)
Ravi, N.; Shalinie, S.M.: Semisupervised-learning-based security to detect and mitigate intrusions in IoT network. IEEE Internet Things J. 7, 11041–11052 (2020)
Vandana, M.; Manmadhan, S.: Self learning network traffic classification. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–5. IEEE (2015)
Rezvy, S.; Luo, Y.; Petridis, M.; Lasebae, A.; Zebin, T.: An efficient deep learning model for intrusion classification and prediction in 5G and IoT networks. In: 2019 53rd Annual Conference on Information Sciences and Systems (CISS), pp. 1–6. IEEE (2019)
Wang, H.; Han, B.; Su, J.; Wang, X.: A high-performance intrusion detection method based on combining supervised and unsupervised learning. In: IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1803–1810. IEEE 2018 (2018)
Patel, B.; Somani, Z.; Ajila, S.A.; Lung, C.-H.: Hybrid relabeled model for network intrusion detection. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 872–877. IEEE (2018)
Dawoud, A.; Shahristani, S.; Raun, C.: Deep learning for network anomalies detection. In: 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), pp. 149–153. IEEE (2018)
Veeramachaneni, K.; Arnaldo, I.; Korrapati, V.; Bassias, C.; Li, K.: \(\text{Ai}^{2}\): training a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), pp. 49–54. IEEE (2016)
Callegari, C.; Bucchianeri, E.; Giordano, S.; Pagano, M.: Real time attack detection with deep learning. In: 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–5. IEEE (2019)
Wang, J.; Zhao, H.; Xu, J.; Li, H.; Zhu, H.; Chao, S.; Zheng, C.: Using intuitionistic fuzzy set for anomaly detection of network traffic from flow interaction. IEEE Access 6, 64801–64816 (2018)
Islam, R.; Refat, R.U.D.; Yerram, S.M.; Malik, H.: Graph-based intrusion detection system for controller area networks. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3025685
Wang, W.; Shang, Y.; He, Y.; Li, Y.; Liu, J.: BotMark: automated botnet detection with hybrid analysis of flow-based and graph-based traffic behaviors. Inf. Sci. 511, 284–296 (2020)
Paudel, R.; Muncy, T.; Eberle, W.: Detecting dos attack in smart home IoT devices using a graph-based approach. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 5249–5258. IEEE (2019)
Hamza, A.; Gharakheili, H.H.; Benson, T. A.; Sivaraman, V.: Detecting volumetric attacks on lot devices via SDN-based monitoring of mud activity. In: Proceedings of the 2019 ACM Symposium on SDN Research, pp. 36–48 (2019)
Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V.: Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans. Mob. Comput. 18, 1745–1759 (2018)
Yu, B.; Smith, L.; Threefoot, M.; Olumofin, F.G.: Behavior analysis based DNS tunneling detection and classification with big data technologies. In: IoTBD, pp. 284–290 (2016)
Sadikin, F.; van Deursen, T.; Kumar, S.: A ZigBee intrusion detection system for IoT using secure and efficient data collection. Internet Things 12, 100306 (2020)
Ndibwile, J.D.; Govardhan, A.; Okada, K.; Kadobayashi, Y.: Web server protection against application layer DDOS attacks using machine learning and traffic authentication. In: IEEE 39th Annual Computer Software and Applications Conference, vol. 3, pp. 261–267. IEEE 2015 (2015)
Al-Jarrah, O.Y.; Alhussein, O.; Yoo, P.D.; Muhaidat, S.; Taha, K.; Kim, K.: Data randomization and cluster-based partitioning for botnet intrusion detection. IEEE Trans. Cybern. 46, 1796–1806 (2015)
Shi, Z.; Li, J.; Wu, C.; Li, J.: DeepWindow: an efficient method for online network traffic anomaly detection. In: 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 2403–2408. IEEE (2019)
Park, K.; Song, Y.; Cheong, Y.-G.: Classification of attack types for intrusion detection systems using a machine learning algorithm. In: IEEE fourth international conference on big data computing service and applications (BigDataService), pp. 282–286. IEEE 2018 (2018)
Lysenko, S.; Pomorova, O.; Savenko, O.; Kryshchuk, A.; Bobrovnikova, K.: DNS-based anti-evasion technique for botnets detection. In: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 1, pp. 453–458. IEEE (2015)
Li, Y.; Liu, J.; Li, Q.; Xiao, L.: Mobile cloud offloading for malware detections with learning. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 197–201. IEEE (2015)
Choi, S.-G.; Cho, S.-B.: Adaptive database intrusion detection using evolutionary reinforcement learning. In: International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, 6–8 Sept 2017, Proceeding, pp. 547–556. Springer (2017)
Alshammari, R.; Zincir-Heywood, A.N.: Can encrypted traffic be identified without port numbers, IP addresses and payload inspection? Comput. Netw. 55, 1326–1350 (2011)
Cheh, C.; Chen, B.; Temple, W.G.; Sanders, W.H.: Modeling adversarial physical movement in a railway station: classification and metrics. ACM Trans. Cyber-Phys. Syst. (2019). https://doi.org/10.1145/3349584
Ghafir, I.; Kyriakopoulos, K.G.; Lambotharan, S.; Aparicio-Navarro, F.J.; AsSadhan, B.; Binsalleeh, H.; Diab, D.M.: Hidden Markov models and alert correlations for the prediction of advanced persistent threats. IEEE Access 7, 99508–99520 (2019)
Moustafa, N.; Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE 2015 (2015)
Stewart, E.; Liao, A.; Roberts, C.: Open \(\mu \)pmu: a real world reference distribution micro-phasor measurement unit data set for research and application development (2016)
Ramakrishna, S.; Rahiminasab, Z.; Karsai, G.; Easwaran, A.; Dubey, A.: Efficient out-of-distribution detection using latent space of \(\beta \)-vae for cyber-physical systems. ACM Trans. Cyber-Phys. Syst. (2022). https://doi.org/10.1145/3491243
Chowdhury, M.; Ray, B.; Chowdhury, S.; Rajasegarar, S.: A novel insider attack and machine learning based detection for the internet of things. ACM Trans. Internet Things (2021). https://doi.org/10.1145/3466721
Zhao, R.; Gui, G.; Xue, Z.; Yin, J.; Ohtsuki, T.; Adebisi, B.; Gacanin, H.: A novel intrusion detection method based on lightweight neural network for internet of things. IEEE Internet Things J. 9, 9960–9972 (2022). https://doi.org/10.1109/JIOT.2021.3119055
Moustafa, N.; Turnbull, B.; Choo, K.-K.R.: An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of things. IEEE Internet Things J. 6, 4815–4830 (2019). https://doi.org/10.1109/JIOT.2018.2871719
Bodström, T.; Hämäläinen, T.: A novel deep learning stack for apt detection. Appl. Sci. 9, 1055 (2019)
Shi, Y.; Chen, G.; Li, J.: Malicious domain name detection based on extreme machine learning. Neural Process. Lett. 48, 1347–1357 (2018)
de Araujo-Filho, P.F.; Kaddoum, G.; Campelo, D.R.; Gondim Santos, A.; Macêdo, D.; Zanchettin, C.: Intrusion detection for cyber-physical systems using generative adversarial networks in fog environment. IEEE Internet Things J. 8, 6247–6256 (2021). https://doi.org/10.1109/JIOT.2020.3024800
Şahingöz, Ö. K.; Buber, E.; Demir, Ö.; Diri, B.: Machine learning based phishing detection from URLs (2017)
Xiao, L.; Li, Y.; Han, G.; Liu, G.; Zhuang, W.: PHY-layer spoofing detection with reinforcement learning in wireless networks. IEEE Trans. Veh. Technol. 65, 10037–10047 (2016)
Murali, S.; Jamalipour, A.: A lightweight intrusion detection for sybil attack under mobile RPL in the internet of things. IEEE Internet Things J. 7, 379–388 (2020). https://doi.org/10.1109/JIOT.2019.2948149
Debatty, T.; Mees, W.; Gilon, T.: Graph-based apt detection. In: 2018 International Conference on Military Communications and Information Systems (ICMCIS), pp. 1–8. IEEE (2018)
Ghafir, I.; Hammoudeh, M.; Prenosil, V.; Han, L.; Hegarty, R.; Rabie, K.; Aparicio-Navarro, F.J.: Detection of advanced persistent threat using machine-learning correlation analysis. Future Gener. Comput. Syst. 89, 349–359 (2018)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Alkasassbeh, M., Al-Haj Baddar, S. Intrusion Detection Systems: A State-of-the-Art Taxonomy and Survey. Arab J Sci Eng 48, 10021–10064 (2023). https://doi.org/10.1007/s13369-022-07412-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-022-07412-1