Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

A novel approach of preprocessing EEG signals by generating spectrum image for effective Convolutional Neural Network (CNN) based classification for Motor Imaginary (MI) recognition is proposed. The approach involves extracting the Variational Mode Decomposition (VMD) modes of EEG signals, from which the Short Time Fourier Transform (STFT) of all the modes are arranged to form EEG spectrum images. The EEG spectrum images generated are provided as input image to CNN. The two generic CNN architectures for MI classification (EEGNet and DeepConvNet) and the architectures for pattern recognition (AlexNet and LeNet) are used in this study. Among the four architectures, EEGNet provides average accuracies of 91.37%, 94.41%, 85.67% and 90.21% for the four datasets used to validate the proposed approach. Consistently better results in comparison with results in recent literature demonstrate that the EEG spectrum image generation using VMD-STFT is a promising method for the time frequency analysis of EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of eeg-based brain-computer interface paradigms. J Neural Eng. 2019;16(1):011001.

    Article  Google Scholar 

  2. Anam K, Nuh M, Al-Jumaily A. Comparison of eeg pattern recognition of motor imagery for finger movement classification. In: 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 24–27. IEEE 2019

  3. Bashivan P, Rish I, Yeasin M, Codella N. Learning representations from eeg with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 2015

  4. Bhattacharyya S, Mukul M.K. Reactive frequency band based movement imagery classification. Journal of Ambient Intelligence and Humanized Computing 2018;pp. 1–14

  5. Bizopoulos P, Lambrou G.I, Koutsouris D.: Signal2image modules in deep neural networks for eeg classification. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 702–705. IEEE 2019

  6. Blankertz B, Muller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlogl A, Pfurtscheller G, Millan JR, Schroder M, Birbaumer N. The bci competition iii: validating alternative approaches to actual bci problems. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):153–9.

    Article  Google Scholar 

  7. Cho H, Ahn M, Ahn S, Kwon M, Jun S.C. Eeg datasets for motor imagery brain–computer interface. GigaScience. 2017;6(7):gix034.

    Article  Google Scholar 

  8. Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (eeg) classification tasks: a review. J Neural Eng. 2019;16(3):031001.

    Article  Google Scholar 

  9. Dose H, Møller J.S, Puthusserypady S, Iversen H.K. A deep learning mi-eeg classification model for bcis. In: 2018 26th European Signal Processing Conference, 2018;pp. 1690–93. IEEE

  10. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process. 2014;62(3):531–44.

    Article  MathSciNet  Google Scholar 

  11. Gowri B.G, Kumar S.S, Mohan N, Soman K, P. A vmd based approach for speech enhancement. In: Advances in Signal Processing and Intelligent Recognition Systems, 2016;pp. 309–321. Springer

  12. Hatipoglu B, Yilmaz CM, Kose C. A signal-to-image transformation approach for eeg and meg signal classification. Signal, Image Video Process. 2019;13(3):483–90.

    Article  Google Scholar 

  13. Herman P, Prasad G, McGinnity TM, Coyle D. Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):317–26.

    Article  Google Scholar 

  14. Hosseini MP, Pompili D, Elisevich K, Soltanian-Zadeh H. Optimized deep learning for eeg big data and seizure prediction bci via internet of things. IEEE Trans Big Data. 2017;3(4):392–404.

    Article  Google Scholar 

  15. Huan NJ, Palaniappan R. Neural network classification of autoregressive features from electroencephalogram signals for brain-computer interface design. J Neural Eng. 2004;1(3):142.

    Article  Google Scholar 

  16. Kaya M, Binli MK, Ozbay E, Yanar H, Mishchenko Y. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci Data. 2018;5:180211.

    Article  Google Scholar 

  17. Krizhevsky A, Sutskever I, Hinton G.E. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, 2012;pp. 1097–1105

  18. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. Eegnet: a compact convolutional neural network for eeg-based brain-computer interfaces. J Neural Eng. 2018;15(5):056013.

    Article  Google Scholar 

  19. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278–324.

  20. Ma X, Wang D, Liu D, Yang J. Dwt and cnn based multi-class motor imagery electroencephalographic signal recognition. J Neural Eng. 2020;17(1):016073.

    Article  Google Scholar 

  21. Mol PG, Sowmya V, Soman K. Performance enhancement of minimum volume based hyper spectral unmixing algorithms by variational mode decomposition. Indian Journal of Science and Technology. 2015;8(24).

  22. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial eeg classification in a movement task. Clin Neurophysiol. 1999;110(5):787–98.

    Article  Google Scholar 

  23. Padfield N, Zabalza J, Zhao H, Masero V, Ren J. Eeg-based brain-computer interfaces using motor-imagery: techniques and challenges. Sensors. 2019;19(6):1423.

    Article  Google Scholar 

  24. Park C, Looney D, ur Rehman N, Ahrabian A, Mandic D.P. Classification of motor imagery bci using multivariate empirical mode decomposition. IEEE Transactions on neural systems and rehabilitation engineering 2012; 21(1), 10–22

  25. Pérez Zapata A.F, et al. Classification of motor imagery eeg signals using a cnn architecture and a meta-heuristic optimization algorithm for selecting training parameters 2019.

  26. Pfurtscheller G, Da Silva FL. Event-related eeg/meg synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    Article  Google Scholar 

  27. Phang CR, Ko LW. Global cortical network distinguishes motor imagination of the left and right foot. IEEE Access. 2020;8:103734–45.

    Article  Google Scholar 

  28. Premjith B, Mohan N, Poornachandran P, Soman K P. Audio data authentication with pmu data and ewt. Procedia Technol. 2015;21:596–603.

    Article  Google Scholar 

  29. Ramos-Aguilar R, Olvera-López JA, Olmos-Pineda I. Analysis of eeg signal processing techniques based on spectrograms. Res Comput Sci. 2017;145:151–62.

    Article  Google Scholar 

  30. Rodrigues PLC, Jutten C, Congedo M. Riemannian procrustes analysis: transfer learning for brain-computer interfaces. IEEE Trans Biomed Eng. 2018;66(8):2390–401.

    Article  Google Scholar 

  31. Sakhavi S, Guan C, Yan S. Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans Neural Net Learn Syst. 2018;29(11):5619–29.

    Article  MathSciNet  Google Scholar 

  32. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T. Deep learning with convolutional neural networks for eeg decoding and visualization. Human Brain Map. 2017;38(11):5391–420.

    Article  Google Scholar 

  33. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imag. 2016;35(5):1285–98.

    Article  Google Scholar 

  34. Sreeja S, Samanta D, et al. Distance-based weighted sparse representation to classify motor imagery eeg signals for bci applications. Multimedia Tools and Applications 2020; pp. 1–19 .

  35. Sujadevi V, Mohan N, Kumar SS, Akshay S, Soman K. A hybrid method for fundamental heart sound segmentation using group-sparsity denoising and variational mode decomposition. Biomed Eng Lett. 2019;9(4):413–24.

    Article  Google Scholar 

  36. Tangermann M, Müller KR, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Mueller-Putz G, et al. Review of the bci competition iv. Front Neurosci. 2012;6:55.

    Article  Google Scholar 

  37. Uyulan C, Erguzel TT. Analysis of time-frequency eeg feature extraction methods for mental task classification. Int J Comput Intell Syst. 2017;10(1):1280–8.

    Article  Google Scholar 

  38. Wang B, Wong C.M, Kang Z, Liu F, Shui C, Wan F, Chen C.P. Common spatial pattern reformulated for regularizations in brain-computer interfaces. IEEE Transactions on Cybernetics 2020.

  39. Wolpaw JR, McFarland DJ. Multichannel eeg-based brain-computer communication. Electroencephalogr Clin Neurophysiol. 1994;90(6):444–9.

    Article  Google Scholar 

  40. Xu J, Grosse-Wentrup M, Jayaram V. Tangent space spatial filters for interpretable and efficient riemannian classification. J Neural Eng. 2020;17(2):026043.

    Article  Google Scholar 

  41. Xu L, Xu M, Ke Y, An X, Liu S, Ming D. Cross-dataset variability problem in eeg decoding with deep learning. Frontiers in Human Neuroscience. 2020;14.

  42. Yilmaz BH, Yilmaz CM, Kose C. Diversity in a signal-to-image transformation approach for eeg-based motor imagery task classification. Med Biol Eng Comput. 2020;58(2):443–59.

    Article  Google Scholar 

  43. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Advances in neural information processing systems, 2014;pp. 3320–3328.

  44. Yu Z, Ma T, Fang N, Wang H, Li Z, Fan H. Local temporal common spatial patterns modulated with phase locking value. Biomed Signal Process Control. 2020;59:101882.

    Article  Google Scholar 

  45. Zhang Y, Nam CS, Zhou G, Jin J, Wang X, Cichocki A. Temporally constrained sparse group spatial patterns for motor imagery bci. IEEE Trans Cybern. 2018;49(9):3322–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Keerthi Krishnan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthi Krishnan, K., Soman, K.P. CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image. Biomed. Eng. Lett. 11, 235–247 (2021). https://doi.org/10.1007/s13534-021-00190-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-021-00190-z