Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Indexing heterogeneous features with superimages

  • Regular Paper
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

As an important procedure in image retrieval, off-line indexing focuses on organizing relevant images together and largely decides the efficiency, accuracy, and memory cost of the retrieval system. Because the image contains multi-level visual and semantic clues, the described indexing strategy should be able to reflect such multi-level relevance. However, most of the existing indexing strategies view database images individually and only consider partial relevance, i.e., relevance reflected by either local or global feature. To overcome these issues and design better indexing strategy, we propose to package semantically relevant images into superimages, and then index superimages instead of single images. Superimage effectively packages multiple images into one new unit, and hence significantly decreases the number of images to be indexed. This naturally saves the memory cost and retrieval time. To make the final index file discriminative to both visual and semantic relevances, we extract local descriptors from superimages and index them with inverted file. During online retrieval, we only need to extract local descriptors from queries, but could get semantic-aware retrieval results. This is because during our off-line indexing stage, both the semantically and visually relevant images are organized together by indexing heterogeneous features in superimages. Therefore, our approach is naturally superior to many online retrieval fusion algorithms in terms of retrieval efficiency and memory consumption. Moreover, extensive experiments on multiple retrieval tasks also manifest the promising accuracy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://press.liacs.nl/mirflickr/.

  2. http://lear.inrialpes.fr/~jegou/data.php.

  3. http://vis.uky.edu/~stewe/ukbench/.

References

  1. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS

  2. Bay H, Tuytelaars T, Van Gool L (2006) Surf: Speeded up robust features. In: ECCV. Springer, Berlin, pp 404–417

  3. Bergamo A, Torresani L (2012) Meta-class features for large-scale object categorization on a budget. In: CVPR

  4. Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: Binary robust independent elementary features. In: ECCV

  5. Deng J, Berg AC, Fei-Fei L (2011) Hierarchical semantic indexing for large scale image retrieval. In: CVPR

  6. Douze M, Jégou H, Sandhawalia H, Amsaleg L, Schmid C (2009) Evaluation of gist descriptors for web-scale image search. In: ICIVR. ACM, p 19

  7. Douze M, Ramisa A, Schmid C (2011) Combining attributes and fisher vectors for effcient image retrieval. In: CVPR

  8. Fagin R, Kumar R, Sivakumar D (2003) Efficient similarity search and classification via rank aggregation. In: ACM SIGMOD

  9. Fellbaum C (1998) Wordnet: an electronic lexical database. Bradford Books

  10. Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976

    Article  MathSciNet  MATH  Google Scholar 

  11. Gionis A, Indyky P, Motwaniz R (1999) Similarity search in high dimensions via hashing. In: VLDB, pp. 518–529

  12. Huiskes MJ, Lew MS (2008) The mir flickr retrieval evaluation. In: MIR ’08: Proceedings of the 2008 ACM ICMIR. ACM, New York

  13. Jégou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: ECCV

  14. Jégou H, Douze M, Schmid C (2010) Improving bag-of- feature for large scale image search. IJCV 87(3):316–336

    Article  Google Scholar 

  15. Jégou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. TPAMI 33(1):117–128

    Article  Google Scholar 

  16. Jégou H, Schmid C, Harzallah H, Verbeek J (2010) Accurate image search using the contextual dissimilarity measure. TPAMI 32(1):2–11

    Article  Google Scholar 

  17. Karp RM (1972) Reducibility among combinatorial problems. Springer, Berlin

    Google Scholar 

  18. Ke Y, Sukthankar R (2004) Pca-sift: A more distinctive representation for local image descriptors. In: CVPR, IEEE, vol. 2, pp II-506

  19. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: NIPS

  20. Liu Z, Li H, Zhou W, Tian Q (2012) Embedding spatial context into inverted file for large-scale image search. In: ACM Multimedia

  21. Large scale visual recognition challenge (2010). http://www.image-net.org/challenges/LSVRC/2010

  22. Lowe DG (2004) Distinctive image features from scale invariant keypoints. IJCV 60(2):91–110

    Article  Google Scholar 

  23. Makino K, Uno T (2004) New algorithms for enumerating all maximal cliques. In: Algorithm Theory-SWAT 2004, pp. 260–272. Springer, Berlin

  24. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. TPAMI 27(10):1615–1630

    Article  Google Scholar 

  25. Ng AY, Jordan MI, Weiss Y et al (2002) On spectral clustering: Analysis and an algorithm. Adv Neural Inf Process Syst 2:849–856

    Google Scholar 

  26. Nistér D, Stewénius H (2006) Scalable recognition with a vocabulary tree. In: CVPR

  27. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42(3):145–175

    Article  MATH  Google Scholar 

  28. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. ECCV 4:143–156

    Google Scholar 

  29. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: CVPR

  30. Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an effcient alternative to sift or surf. In: ICCV

  31. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: ICCV

  32. Tomita E, Tanaka A, Takahashi H (2006) The worst-case time complexity for generating all maximal cliques and computational experiments. Theor Comput Sci 363(1):28–42

    Article  MathSciNet  MATH  Google Scholar 

  33. Torralba A, Fergus R, Weiss Y (2008) Small codes and large image databases for recognition. In: CVPR

  34. Torresani L, Szummer M, Fitzgibbon A (2010) Efficient object category recognition using classemes. In: ECCV, pp. 776–789

  35. Wu Z, Ke Q, Isard M, Sun J (2009) Bundling feature for large scale partial-duplicated web image search. In: CVPR

  36. Ye G, Liu D, Jhuo IH, Chang SF (2012) Robust late fusion with rank minimization. In: CVPR

  37. Zhang S, Huang J, Huang Y, Yu Y, Li H, Metaxas DN (2010) Automatic image annotation using group sparsity. In: CVPR, IEEE, pp 3312–3319

  38. Zhang S, Huang Q, Hua G, Jiang S, Gao W (2010) Tian, Q.: building contextual visual vocabulary for large-scale image applications. In: ACM multimedia

  39. Zhang S, Tian Q, Hua G, Huang Q, Gao W (2009) Descriptive visual words and visual phrases for image applications. In: ACM multimedia

  40. Zhang S, Tian Q, Lu K, Huang Q, Gao W (2013) Edge-sift: discriminative binary descriptor for scalable partial-duplicate mobile search. TIP

  41. Zhang S, Yang M, Cour T, Yu K, Metaxas DN (2012) Query specific fusion for image retrieval. ECCV 2:660–673

    Google Scholar 

  42. Zhang S, Yang M, Wang X, Lin Y, Tian Q (2013) Sematnic-aware co-indexing for image retrieval. In: ICCV

  43. Zhang Y, Jia, Z, Chen T (2011) Image retrieval with geometry-preserving visual phrases. In: CVPR

Download references

Acknowledgments

This work was supported in part to Dr. Qi Tian by ARO grant W911NF-12-1-0057, Faculty Research Award by NEC Laboratories of America, and 2012 UTSA START-R Research Award, respectively. This work was supported in part by NSFC 61128007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Zhang, S., Huang, T. et al. Indexing heterogeneous features with superimages. Int J Multimed Info Retr 3, 245–257 (2014). https://doi.org/10.1007/s13735-014-0064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-014-0064-x

Keywords