Abstract
Deep learning is a rapidly growing discipline that models high-level features in data as multilayered neural networks. In this paper, we propose a deep learning approach for 3D shape retrieval using a multi-level feature learning methodology. We first extract low-level features or local descriptors from a 3D shape using spectral graph wavelets. Then, we construct mid-level features from these local descriptors via the bag-of-features paradigm by employing locality-constrained linear coding as a feature coding method, together with the biharmonic distance as a measure of the spatial relationship between each pair of bag-of-feature descriptors. Finally, high-level shape features are learned via a deep auto-encoder, resulting in a deep shape-aware descriptor that is compact, geometrically informative and efficient to compute. The proposed 3D shape retrieval approach is evaluated on SHREC-2014 and SHREC-2015 datasets through extensive experiments, and the results show compelling superiority of our approach over the state-of-the-art methods.
Similar content being viewed by others
Notes
ARPACK (ARnoldi PACKage) is a MATLAB library for computing the eigenvalues and eigenvectors of large matrices.
References
Pickup D, Sun X, Rosin P, Martin R, Cheng Z, Lian Z, Aono M, Ben Hamza A, Bronstein A, Bronstein M, Bu S, Castellani U, Cheng S, Garro V, Giachetti A, Godil A, Han J, Johan H, Lai L, Li B, Li C, Li H, Litman R, Liu X, Liu Z, Lu Y, Tatsuma A, Ye J (2014) SHREC’14 track: shape retrieval of non-rigid 3D human models. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp 1–10
Lian JZZ, Choi S, ElNaghy H, El-Sana J, Furuya T, Giachetti A, Isaia RGL, Lai L, Li C, Li H, Limberger F, Martin R, Nakanishi R, Nonato ANL, Ohbuchi R, Pevzner K, Pickup D, Rosin P, Sharf A, Sun L, Sun X, Tari S, Unal G, Wilson R (2015) SHREC’15 track: non-rigid 3D shape retrieval. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp 1–14
Rustamov R (2007) Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symp. Geometry Processing, pp 225–233
Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature based on heat diffusion. Comput Graph Forum 28(5):1383–1392
Bronstein M, Kokkinos I (2010) Scale-invariant heat kernel signatures for non-rigid shape recognition. In: Proceedings of the CVPR, pp 1704–1711
Aubry M, Schlickewei U, Cremers D (2011) The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proceedings of the Computational Methods for the Innovative Design of Electrical Devices, pp 1626–1633
Li C, Ben Hamza A (2013) A multiresolution descriptor for deformable 3D shape retrieval. Visual Comput 29:513–524
Reuter M, Wolter F, Peinecke N (2006) Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput Aided Design 38(4):342–366
Chaudhari A, Leahy R, Wise B, Lane N, Badawi R, Joshi A (2014) Global point signature for shape analysis of carpal bones. Phys Med Biol 59:961–973
Ye J, Yu Y (2015) A fast modal space transform for robust nonrigid shape retrieval. Visual Comput 32(5):553–568
Bronstein A, Bronstein M, Guibas L, Ovsjanikov M (2011) Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans Graph 30(1):1–20
Litman R, Bronstein A, Bronstein M, Castellani U (2014) Supervised learning of bag-of-features shape descriptors using sparse coding. Comput Graph Forum 33(5):127–136
LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551
Ciresan D, Meier U, Masci J, Gambardella L, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the IJAC, pp 1237–1242
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of the ICLR
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the CVPR
Lee H, Grosse R, Ranganath R, Ng A, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the ICML, pp 609–616
Masci J, Meier U, Ciresan D, Schmidhuber J (2011) Stacked convolutional auto-encoders for hierarchical feature extraction. In: Proceedings of the International Conference on Artificial Neural Networks, p 5259
Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554
Hinton G (2012) A practical guide to training restricted Boltzmann machines. In: Montavon G, Orr GB, Müller K (eds) Neural networks: tricks of the trade. Springer, Berlin, pp 599–619
Xie J, Xu L, Chen E (2012) Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp 350–358
Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp 1097–1105
Karpathy A, Fei-Fei L (2015) Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the CVPR, pp 3128–3137
Zhang J, Shan S, Kan M, Chen X (2014) Coarse-to-fine autoencoder networks (CFAN) for real-time face alignment. In: Proceedings of the ECCV, pp 1–16
Eslami S, Heess N, Williams C, Winn J (2014) The shape Boltzmann machine: a strong model of object shape. Int J Comput Vis 107(2):155–176
Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the CVPR, pp 1912–1920
Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the ICCV, pp 945–953
Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3D shape retrieval. Neurocomputing 204(2016):41–50
Qi C, Su H, Nießner M, Dai A, Yan M, Guibas L (2016) Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the CVPR
Savva M, Yu F, Su H, Aono M, Chen B, Cohen-Or D, Deng W, Su H, Bai S, Bai X, Fish JHN, Kalogerakis E, Learned-Miller E, Li Y, Liao M, Maji S, Wang Y, Zhang N, Zhou Z (2016) SHREC’16 track: large-scale 3D shape retrieval from ShapeNet Core55. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval
Fang Y, Xie J, Dai G, Wang M, Zhu F, Xu T, Wong E (2015) 3D deep shape descriptor. In: Proceedings of the CVPR, pp 2319–2328
Bu S, Liu Z, Han J, Wu J, Ji R (2014) Learning high-level feature by deep belief networks for 3-D model retrieval and recognition. IEEE Trans Multimed 24(16):2154–2167
Lipman Y, Rustamov R, Funkhouser T (2010) Biharmonic distance. ACM Trans Graph 29(3):1–11
Rosenberg S (1997) The Laplacian on a Riemannian manifold. Cambridge University Press
Meyer M, Desbrun M, Schröder P, Barr A (2003) Discrete differential-geometry operators for triangulated 2-manifolds. Vis Math III 3(7):35–57
Li C, Ben Hamza A (2013) Intrinsic spatial pyramid matching for deformable 3D shape retrieval. Int J Multimed Inf Retr 2:261–271
Dong W, Li X, Zhang D, Shi G (2010) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proceedings of the CVPR, pp 3360–3367
Ben Hamza A, Krim H (2006) Geodesic matching of triangulated surfaces. IEEE Trans Image Process 15(8):2249–2258
Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué G, Nguyen H, Ohbuchi R, Ohkita Y, Ohishi Y, Porikli F, Reuter M, Sipiran I, Smeets D, Suetens P, Tabia H, Vandermeulen D (2011) SHREC’11 track: shape retrieval on non-rigid 3D watertight meshes. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on 3D Object Retrieval, pp 79–88
Giachetti A, Lovato C (2012) Radial symmetry detection and shape characterization with the multiscale area projection transform. Comput Graph Forum 31(5):1669–1678
Pickup D, Sun X, Rosin P, Martin R (2015) Geometry and context for semantic correspondences and functionality recognition in manmade 3D shapes. Pattern Recognit 48(8):2500–2512
Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The Princeton shape benchmark. In: Proceedings of the SMI, pp 167–178
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghodrati, H., Ben Hamza, A. Deep shape-aware descriptor for nonrigid 3D object retrieval. Int J Multimed Info Retr 5, 151–164 (2016). https://doi.org/10.1007/s13735-016-0103-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13735-016-0103-x