Abstract
Real-world problems generally do not possess mathematical features such as differentiability and convexity and thus require non-traditional approaches to find optimal solutions. SSA is a meta-heuristic optimization algorithm based on the swimming behaviour of salps. Though a novel idea, it suffers from a slow convergence rate to the optimal solution, due to lack of diversity in salp population. In order to improve its performance, chaotic oscillations generated from quadratic integrate and fire model have been augmented to SSA. This improves the balance between exploration and exploitation, generating diversity in the salp population, thus avoiding local entrapment. CSSA has been tested against twenty-two bench mark functions. Its performance has been compared with existing standard optimization algorithms, namely particle swarm optimization, ant–lion optimization and salp swarm algorithm. Statistical tests have been carried out to prove the superiority of chaotic salp swarm algorithm over the other three algorithms. Finally, chaotic SSA is applied on three engineering problems to demonstrate its practicability in real-life applications.
Access this article
Rent this article via DeepDyve
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Karaboga, D., Akay, B.: A modified artificial bee colony (abc) algorithm for constrained optimization problems. Appl. Soft Comput. 11(3), 3021–3031 (2011)
Fister Jr, I., Yang, X.S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186 (2013)
Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 96, 120–133 (2016)
Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspir. Comput. 3, 1–16 (2011)
Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3, 1–16 (1995)
Biswas, A., Mishra, K., Tiwari, S., Misra, A.: Physics-inspired optimization algorithms: a survey. J. Optim. 2013, 438152 (2013)
Glover, F.: Tabu search–part I. ORSA J. Comput. 1(3), 190–206 (1989)
Selman, B., Gomes, C.P.: Hill-climbing Search. Encyclopedia of Cognitive Science, pp. 333–336. Wiley (2006)
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer, Boston (2003)
Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: van Laarhoven, P.J., Aarts, E.H. (eds.) Simulated Annealing: Theory and Applications. Springer, Dordrecht (1987)
Basturk, B., Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, pp. 12–14 (2006)
Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection (vol. 1). MIT press (1992)
Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–59 (1997)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evolut. Comput. 3, 82–102 (1999)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12, 702–13 (2008)
Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMAES). Evolut. Comput. 11, 1–18 (2003)
Webster, B., Bernhard, P.J.: A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 International Conference on Information and Knowledge Engineering (IKE’03), Las Vegas, Nevada, USA, pp. 255–261 (2003)
Formato, R.A.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog. Electromagn. Res. 77, 425–91 (2007)
Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38, 13170–80 (2011)
Du, H., Wu, X., Zhuang, J.: Small-world optimization algorithm for function optimization. In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds.) Advances in Natural Computation, pp. 264–273. Springer, Berlin (2006)
Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6, 132–40 (2011)
Moghaddam, F.F., Moghaddam, R.F., Cheriet, M.: Curved space optimization: a random search based on general relativity theory. arXiv, preprint arXiv:1208.2214 (2012)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–48 (2009)
Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–89 (2010)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–94 (2012)
Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–11 (2006)
Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009, pp. 210–214 (2009)
Kaveh, A.: Particle swarm optimization. In: Kaveh, A. (ed.) Advances in Metaheuristic Algorithms for Optimal Design of Structures, pp. 9–40. Springer, Cham (2014)
Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspir. Comput. 2, 78–84 (2010)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)
Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl. Based Syst. 26, 69–74 (2012)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, pp. 65–74 (2010)
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)
Montiel, O., Castillo, O., Melin, P., Díaz, A.R., Sepúlveda, R.: Human evolutionary model: a new approach to optimization. Inf. Sci. 177, 2075–2098 (2007)
Liu, C., Han, M., Wang, X.: A novel evolutionary membrane algorithm for global numerical optimization, In: 2012 Third International Conference on Intelligent Control and Information Processing (ICICIP), pp. 727–732 (2012)
Farasat, A., Menhaj, M.B., Mansouri, T., Moghadam, M.R.S.: ARO: a new modelfree optimization algorithm inspired from asexual reproduction. Appl. Soft Comput. 10, 1284–1292 (2010)
Kaveh, A., Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)
Karaboga, D., Akay, B.: A modified artificial bee colony (abc) algorithm for constrained optimization problems. Appl. Soft Comput. 11(3), 3021–3031 (2011)
Gandomi, A., Yang, X.-S., Talatahari, S., Alavi, A.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)
Zheng, G., Tonnelier, A.: Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation. Cognit. Neurodyn. 3(3), 197–204 (2009)
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
Bidar, M., Kanan, H. R., Mouhoub, M., Sadaoui, S.: Mushroom Reproduction Optimization (MRO): A Novel Nature-Inspired Evolutionary Algorithm. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–10 (2018)
Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 23(3), 715–734 (2019)
dos Santos Coelho, L., Mariani, V.C.: Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst. Appl. 34(3), 1905–1913 (2008)
Almonacid, B., Soto, R.: Andean Condor Algorithm for cell formation problems. Nat. Comput. 1–31 (2018). https://doi.org/10.1007/s11047-018-9675-0
Han, X., Chang, X.: An intelligent noise reduction method for chaotic signals based on genetic algorithms and lifting wavelet transforms. Inf. Sci. 218, 103–118 (2013)
Arora, S., Singh, S.: An improved butterfly optimization algorithm with chaos. J. Intell. Fuzzy Syst. 32(1), 1079–1088 (2017)
Kaveh, A., Mahdavi, V.: Colliding Bodies Optimization method for optimum discrete design of truss structures. Comput. Struct. 139, 43–53 (2014)
Hatamlou, A.: Blackhole:a new heuristic optimization approach for data clus-tering. Inf. Sci. 222, 175–184 (2013)
Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)
Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)
Rizk-Allah, R.M.: Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J. Comput. Des. Eng. 5, 249–273 (2017)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)
Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, Cambridge (2014)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)
Saremi, S., Mirjalili, S.M., Mirjalili, S.: Chaotic krill herd optimization algorithm. Proced. Technol. 12, 180–185 (2014)
Arora, S., Anand, P.: Chaotic grasshopper optimization algorithm for global optimization. Neural Comput. Appl. 1–21 (2018). https://doi.org/10.1007/s00521-018-3343-2
Kaur, G., Arora, S.: Chaotic whale optimization algorithm. J. Comput. Des. Eng. 5(3), 275–284 (2018)
Kohli, M., Arora, S.: Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 5(4), 458–472 (2018)
Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)
Mishra, A., Majhi, S.K.: Design and Analysis of Modified Leaky Integrate and Fire Model—TENCON IEEE Region 10 Conference (2018)
Mishra, A., Majhi, S.K.: A comprehensive survey of recent developments in neuronal communication and computational neuroscience. J. Ind. Inf. Integr. 13, 40–54 (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Benchmark functions
Benchmark functions
In this section, details of the function used in Table 2 have been described.
-
Function F1
-
Mathematical expression: \(\sum _{i=1}^{n} x_i^2\)
-
Lower bound: \(-100\)
-
Upper bound: 100
-
Dimensions: 30
-
-
Function F2
-
Mathematical expression: \(\sum _{i=1}^{n} \left| x_i \right| + \prod _{i=1}^{n} \left| x_i \right| \)
-
Upper bound: -10
-
Lower bound: 10
-
Dimensions: 10
-
-
Function F3
-
Mathematical expression: \(\sum _{i=1}^{n}\left( \sum _{j=1}^{i} x^{j}\right) ^2\)
-
Upper bound: -100
-
Lower bound: 100
-
Dimensions: 10
-
-
Function F4
-
Mathematical expression: \(max_i\{ \left| x_i \right| , 1\le i \le n \}\)
-
Upper bound: -100
-
Lower bound: 100
-
Dimensions: 10
-
-
Function F5
-
Mathematical expression: \(\sum _{i=1}^{n-1}[100(x_{i+1}-x_{i}^2)^2 +(x_i -1)^2 ]\)
-
Upper bound: \(-30\)
-
Lower bound: 30
-
Dimensions: 10
-
-
Function F6
-
Mathematical expression: \(\sum _{i=1}^{n}([x_i +0.5])^2\)
-
Upper bound: \(-100\)
-
Lower bound: 100
-
Dimensions: 10
-
-
Function F7
-
Mathematical expression: \(\sum _{i=1}^{n} ix_i^4+\hbox {random}[0,1)\)
-
Upper bound: \(-1.28\)
-
Lower bound:1.28
-
Dimensions: 10
-
-
Function F8
-
Mathematical expression: \(\sum _{i=1}^{n} ix_i^4+random[0,1)\)
-
Upper bound: \(-500\)
-
Lower bound: 500
-
Dimensions: 10
-
-
Function F9
-
Mathematical expression: \(\sum _{i=1}^{n} [x_i^2-10\cos (2\pi x_i)+10]\)
-
Upper bound: \(-5.12\)
-
Lower bound: 5.12
-
Dimensions: 10
-
-
Function F10
-
Mathematical expression: \(-20exp\left( {-}0.2\sqrt{\frac{1}{n}\sum _{i{=}1}^{n}x_i^2} \right) -exp\left( \frac{1}{n}\sum _{i=1}^{n}\cos (2\pi x_i) \right) +20 +e\)
-
Upper bound: \(-32\)
-
Lower bound: 32
-
Dimensions: 10
-
-
Function F11
-
Mathematical expression: \(\frac{1}{400} \sum _{i=1}^{n}x_i^2 - \prod _{i=1}^{n}\cos \left( \frac{x_i}{\sqrt{i}} \right) +1\)
-
Upper bound: \(-600\)
-
Lower bound: 600
-
Dimensions: 10
-
-
Function F12
-
Mathematical expression: \(\frac{\pi }{n} \left\{ \right. 10 \sin (\pi y_1) +\sum _{i=1}^{n-1}(y_i -1)^2 [1 + 10 \sin ^2 (\pi y_{i+1})]+(y_n-1)^2\} + \sum _{i=1}^{n} u(x_i,10,100,4)\)
\(y_i=1+\frac{x_i+1}{4}\)
\(u(x_i,a,k,m)=\left\{ \begin{array}{ll} k(x_i-a)^m &{} x_i >a\\ 0 &{} -a<x_i<a\\ k(-x_i-a)^m &{} x_i < -a \end{array}\right. \)
-
Upper bound: \(-50\)
-
Lower bound: 50
-
Dimensions: 10
-
-
Function F13
-
Mathematical expression:
\(0.1 \left\{ \sin ^2\left( 3 \pi x_1 \right) \right. + \sum _{i=1}^{n} (x_i-1)^2[1+\sin ^2(3 \pi x_i +1)]+(x_n -1)^2 [1+\sin ^2(2 \pi x_n)]\left. \right\} + \sum _{i=1}^{n} u(x_i,5,100,4)\)
\(y_i=1+ \frac{x_i + 1 }{4}\)
\(u(x_i,a,k,m)=\left\{ \begin{array}{ll} k(x_i-a)^m &{} x_i >a\\ 0 &{} -a<x_i<a\\ k(-x_i-a)^m &{} x_i < -a \end{array}\right. \)
-
Upper bound: \(-50\)
-
Lower bound: 50
-
Dimensions: 10
-
-
Function F14
-
Pseudocode:
\(\hbox {aS}=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,\ldots \)
\(-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];\)
\(\mathbf{for }\hbox { j}=1:25\)
\(\hbox {bS(j)}=\mathbf{sum }(({x}'-\hbox {aS}(:,\hbox {j})).\hat{\,}6)\);
end
\(\hbox {o}=(1/500+\mathbf{sum }(1./([1:25]+\hbox {bS}))).\hat{\,}(-1)\);
end
-
Upper bound: \(-65.536\)
-
Lower bound: 65.536
-
Dimensions: 2
-
-
Function F15
-
Pseudocode:
\(\hbox {aK}=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246]\);
\(\hbox {bK}=[.25 .5 1 2 4 6 8 10 12 14 16]\);
\(\hbox {bK}=1./\hbox {bK}\);
\(\hbox {o}=\mathbf{sum }((\hbox {aK}-(({x}(1).^{*}(\hbox {bK}.\hat{\,}2 +{x}(2).^{*}\hbox {bK}))./(\hbox {bK}.\hat{\,}2+{x}(3).^{*} \hbox {bK}+{x}(4)))).\hat{\,}2)\);
end
-
Upper bound: \(-5\)
-
Lower bound: 5
-
Dimensions: 4
-
-
Function F16
-
Pseudocode:
$$\begin{aligned} O&=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3\\&\quad +x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4); \end{aligned}$$ -
Upper bound: \(-5\)
-
Lower bound: 5
-
Dimensions: 4
-
-
Function F17
-
Pseudocode:
\(\hbox {o}=(1+({x}(1)+{x}(2)+1)\hat{\,}2^{*}(19-14^{*}{x}(1) +3^{*}({x}(1)\hat{\,}2)-14^{*}{x}(2)+6^{*}{x}(1)^{*}{x} (2)+3^{*}{x}(2)\hat{\,}2))^{*}\ldots (30+(2^{*}{x}(1)-3^{*}{x}(2))\hat{\,}2^{*}(18-32^{*}{x}(1) +12^{*}({x}(1)\hat{\,}2)+48^{*}{x}(2)-36^{*}{x}(1)^{*}{x} (2)+27^{*}({x}(2)\hat{\,}2)))\);
-
Upper bound: \(-2\)
-
Lower bound: 2
-
Dimensions: 2
-
-
Function F18
-
Pseudocode:
\(\hbox {aH}=[3 10 30;.1 10 35;3 10 30;.1 10 35]\);
\(\hbox {cH}=[1 1.2 3 3.2]\);
\(\hbox {pH}=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547; .03815 .5743 .8828]\);
\(\hbox {o}=0\);
for \(\hbox {i}=1:4\)
\(\hbox {o}=\hbox {o}-\hbox {cH(i)}^{*}\hbox {exp}(-(\mathbf{sum }(\hbox {aH}(\hbox {i},:). ^{*}((\hbox {x-pH}(\hbox {i},:)).\hat{\,}2))))\);
end
-
Upper bound: 0
-
Lower bound: 1
-
Dimensions: 3
-
-
Function F19
-
Pseudocode: \(\hbox {aSH}=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3; 8 1 8 1;6 2 6 2;7 3.6 7 3.6]\);
\(\hbox {cSH}=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]\);
\(\hbox {o}=0\);
for \(\hbox {i}=1:5\)
\(\hbox {o}=\hbox {o-((x-aSH(i,:))}^{*}(\hbox {x-aSH}(\hbox {i},:))'+\hbox {cSH}(\hbox {i}))\hat{\,} (-1)\);
end
-
Upper bound: 0
-
Lower bound: 1
-
Dimensions: 6
-
-
Function F20
-
Pseudocode:
\(\hbox {aH}=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14]\);
\(\hbox {cH}=[1 1.2 3 3.2]\);
\(\hbox {pH}=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991\); \(\ldots \, .2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381]\);
\(\hbox {o}=0\);
for \(\hbox {i}=1:4\)
\(\hbox {o}=\hbox {o}-\hbox {cH(i)}^{*}\mathbf{exp }(-(\mathbf{sum }(\hbox {aH}(\hbox {i},:).^{*} ((\hbox {x-pH}(\hbox {i},:)).\hat{\,}2))))\);
end
-
Upper bound: 0
-
Lower bound: 10
-
Dimensions: 4
-
-
Function F21
-
Pseudocode: \(\hbox {aSH}=[4 4 4 4;1 1 1 1;8 8 8 8; 6 6 6 6;3 7 3 7; 2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6]\);
\(\hbox {cSH}=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]\);
\(\hbox {o}=0\);
for \(\hbox {i}=1:7\)
\(\hbox {o}=\hbox {o}-((\hbox {x-aSH}(\hbox {i},:))^{*}(\hbox {x-aSH}(\hbox {i},:)) '+\hbox {cSH}(\hbox {i}))\hat{\,}(-1)\);
end
-
Upper bound: 0
-
Lower bound: 10
-
Dimensions: 4
-
-
Function F22
-
Pseudocode:
\(\hbox {aSH}=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6; 3 7 3 7;2 9 2 9;5 5 3 3; 8 1 8 1;6 2 6 2;7 3.6 7 3.6]\);
\(\hbox {cSH}=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5]\);
\(\hbox {o}=0\);
for \(\hbox {i}=1:10\)
\(\hbox {o}=\hbox {o}-((\hbox {x-aSH}(\hbox {i},:))^{*}(\hbox {x-aSH}(\hbox {i},:))' +\hbox {cSH}(\hbox {i}))\hat{\,}(-1)\);
end
-
Upper bound: 0
-
Lower bound: 10
-
Dimensions: 4
-
Rights and permissions
About this article
Cite this article
Majhi, S.K., Mishra, A. & Pradhan, R. A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization. Prog Artif Intell 8, 343–358 (2019). https://doi.org/10.1007/s13748-019-00184-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13748-019-00184-0