Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Entropy guided evolutionary search for solving Sudoku

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

The Sudoku puzzle solving, a Constraint Satisfaction Problem (CSP), is challenging due to various complexity levels. Although, deterministic as well as meta-heuristics techniques are present to solve the Sudoku puzzle. Still, such techniques are insufficient for solving ‘hard’ frames and suffer from local minima in terms of increased complexity levels of Sudoku. Moreover, the entropy concept is used in designing the solution framework and rating of Sudoku frames. However, it provides superior results mostly up to medium levels. Therefore, we extend the concept of entropy by hybridization with an Evolutionary Algorithm (EA) for solving ‘harder’ instances. To improve results further, we attempt to reduce the uncertainty of Sudoku cells toward zero. With this hybridized EA framework, we embed problem-specific knowledge mapped in terms of a cell’s position uncertainty to construct a fitness function. Moreover, a performance metric, symmetric count (\(S_\mathrm{c}\)) is devised for assessing the obtained solutions. The empirical results show that the proposed hybrid EA framework is capable of efficiently solving a wide range of benchmark Sudoku instances; moreover, this strategy outperforms the existing solution strategies. The convergence rate of the proposed technique is faster in most cases, and this approach works for most instances of ‘hard’ and ‘very hard’ levels of the Sudoku grid. The results indicate that approx. 75% of the frames reach closer to an optimal solution, i.e., the saturation point (\(S_\mathrm{c}=1\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Crawford, B., Castro C., Monfroy, E.: Solving Sudoku with constraint programming. In: Proceedings of International Conference on Multiple Criteria Decision Making (MCDM), Communications in Computer and Information Science, pp. 345–348. Springer (2009). https://doi.org/10.1007/978-3-642-02298-2_52

  2. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 86(5), 1052–1060 (2003)

    Google Scholar 

  3. Pelánek R.: Difficulty rating of Sudoku puzzles by a computational model. In: Proceedings of 24th International on FLAIRS Conference (2011)

  4. Coello, C.A.C.: Treating constraints as objectives for single-objective evolutionary optimization. Eng. Optim. 32(3), 275–308 (2000). https://doi.org/10.1080/03052150008941301

    Article  Google Scholar 

  5. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Appl. Comput. Intell. Soft Comput. 2010(3), 11 (2010). https://doi.org/10.1155/2010/185063

    Article  Google Scholar 

  6. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol. Comput. 1(4), 173–194 (2011). https://doi.org/10.1016/j.swevo.2011.10.001

    Article  Google Scholar 

  7. Chi, E.C., Lange, K.: Techniques for solving Sudoku puzzles. arXiv:1203.2295 (2012)

  8. Reeson, C.G., Huang, K.C., Bayer, K.M., Choueiry, B.Y.: An interactive constraint-based approach to Sudoku. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 1976–1977 (2007)

  9. Simonis, H.: Sudoku as a constraint problem. In: Proceedings of CP Workshop Modeling & Reformulating Constraint Satisfaction Problems (MRCSP), vol. 12, pp. 13–27 (2005)

  10. Zhai, G., Zhang, J.: Solving Sudoku puzzles based on customized information entropy. Int. J. Hybrid Inf. Technol. 6(1), 77–91 (2013)

    Google Scholar 

  11. Kumar, R., Banerjee, N.: Analysis of a multiobjective evolutionary algorithm on 0–1 knapsack problem. Theor. Comput. Sci. 358(1), 104–120 (2006). https://doi.org/10.1016/j.tcs.2006.03.007

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar, R., Singh, P.K.: Assessing solution quality of biobjective 0–1 knapsack problem using evolutionary and heuristic algorithms. Appl. Soft Comput. 10(3), 711–718 (2010). https://doi.org/10.1016/j.asoc.2009.08.037

    Article  Google Scholar 

  13. Binh, T.T.H., McKay, R.I., Hoai, N.X., Nghia, N.D.: New heuristic and hybrid genetic algorithm for solving the bounded diameter minimum spanning tree problem. In: Proceedings of 11th Conference on Genetic & Evolutionary Computation (GECCO), pp. 373–380 (2009). https://doi.org/10.1145/1569901.1569953

  14. Kumar, R., Banerjee, N.: Multiobjective network topology design. Appl. Soft Comput. 11(8), 5120–5128 (2011). https://doi.org/10.1016/j.asoc.2011.05.047

    Article  Google Scholar 

  15. Sundar, S., Singh, A.: A hybrid heuristic for the set covering problem. Oper. Res. Int. J. 12(3), 345–365 (2012). https://doi.org/10.1007/s12351-010-0086-y

    Article  MATH  Google Scholar 

  16. Saha, S., Kumar, R., Baboo, G.: Characterization of graph properties for improved Pareto fronts using heuristics and EA for bi-objective graph coloring problem. Appl. Soft Comput. 13(5), 2812–2822 (2013). https://doi.org/10.1016/j.asoc.2012.06.021

    Article  Google Scholar 

  17. Coello, C.C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, Berlin (2007)

    MATH  Google Scholar 

  18. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000). https://doi.org/10.1162/106365600568167

    Article  Google Scholar 

  19. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, London (2001)

    MATH  Google Scholar 

  20. Kumar, R., Rockett, P.: Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. Evol. Comput. 10(3), 283–314 (2002). https://doi.org/10.1162/106365602760234117

    Article  Google Scholar 

  21. Mantere, T., Koljonen, J.: Solving, rating and generating Sudoku puzzles with GA. In: Proceedings of IEEE Congress Evolutionary Computation (CEC), pp. 1382–1389 (2007). https://doi.org/10.1109/CEC.2007.4424632

  22. Rodríguez-Vázquez, K.: GA and entropy objective function for solving Sudoku puzzle. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, Association for Computing Machinery, New York, NY, USA, GECCO ’18, pp. 67–68 (2018). https://doi.org/10.1145/3205651.3208786

  23. Gunther, J., Moon, T.: Entropy minimization for solving Sudoku. IEEE Trans. Signal Process. 60(1), 508–513 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Felgenhauer, B., Jarvis, F.: Enumerating possible Sudoku grids. http://www.afjarvis.staff.shef.ac.uk/sudoku/sudoku.pdf (2005)

  25. Jones, S.K., Roach, P.A., Perkins, S.: Sudoku puzzle complexity. In: Proceedings of 6th Research Student Workshop, pp. 19–24 (2011)

  26. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: Proceedings of International Symposium on Artificial Intelligence & Mathematics (AIMATH), pp. 1–9 (2006)

  27. Leone, A., Mills, D., Vaswani, P.: Sudoku: bagging a difficulty metric and building up puzzles (2008)

  28. Pelánek, R.: Difficulty rating of Sudoku puzzles: an overview and evaluation. arXiv:1403.7373 (2014)

  29. Harrysson, M., Laestander, H.: Solving Sudoku efficiently with Dancing Links (2014)

  30. Lewis, R.: Metaheuristics can solve Sudoku puzzles. J. Heuristics 13(4), 387–401 (2007). https://doi.org/10.1007/s10732-007-9012-8

    Article  Google Scholar 

  31. Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover for the Sudoku puzzle. In: Proceedings of IEEE Congress Evolutionary Computation (CEC), pp 470–476 (2006). https://doi.org/10.1109/CEC.2006.1688347

  32. Nicolau, M., Ryan, C.: Genetic operators and sequencing in the GAuGE system. In: Proceedings of IEEE Congress Evolutionary Computation (CEC), pp. 1561–1568 (2006). https://doi.org/10.1109/CEC.2006.1688494

  33. Perez, M., Marwala, T.: Stochastic optimization approaches for solving Sudoku. arXiv:0805.0697 (2008). https://doi.org/10.1016/j.eswa.2012.04.019

  34. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, London (2012)

    MATH  Google Scholar 

  35. Mantere, T.: Sudoku page. http://lipas.uwasa.fi/~timan/sudoku/. Accessed 23 Jan 2021

  36. Mantere, T., Koljonen, J.: Solving and analyzing Sudokus with cultural algorithms. In: Proceedings of IEEE Congress Evolutionary Computation (CEC), pp. 4053–4060 (2008). https://doi.org/10.1109/CEC.2008.4631350

  37. Knuth, D.E.: Dancing links. arXiv:cs/0011047 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Kumar, R. Entropy guided evolutionary search for solving Sudoku. Prog Artif Intell 12, 61–76 (2023). https://doi.org/10.1007/s13748-023-00297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-023-00297-7

Keywords