Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A Review on Vibration-Based Fault Diagnosis Techniques for Wind Turbine Gearboxes Operating Under Nonstationary Conditions

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Numerous studies on vibration-based techniques for fault diagnosis of wind turbine gearboxes operating under nonstationary conditions have been reported. In spite, a review on vibration-based condition monitoring and fault diagnosis techniques for gearboxes of wind turbines operating under nonstationary conditions is unavailable. Thus, the objective of this review is to discuss filtering, decomposition, entropy, and cyclostationary analysis techniques, as well as summarizing the remaining issues. This review will discuss various vibration-based diagnostic approaches developed for wind turbine gearboxes under nonstationary conditions, including both simulation and experimental approaches. Studies on dynamic models of gear systems and advanced signal-processing techniques developed for nonstationary conditions are reviewed. Additionally, the importance of multi-sensor and cointegration based approaches is discussed, and intelligent classification methods that have been used to distinguish healthy and faulty gear systems are also reviewed. Finally, the remaining research challenges are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Singh, A.H. Idrisi, Evolution of renewable energy in India: wind and solar. J. Inst. Eng. India Ser. C 101(2), 415–427 (2020)

    Google Scholar 

  2. Z. Feng, M. Liang, Fault diagnosis of wind turbine planetary gearbox under non-stationary conditions via adaptive optimal kernel time–frequency analysis. Renew Energy 66, 468–477 (2014)

    Google Scholar 

  3. E. Dyer, M. Majzoobi, F. Koushanfar (2011). Hybrid modeling of non-stationary process variations. In Proceedings of the 48th Design Automation Conference (pp. 194–199). ACM

  4. M.S. Kan, A.C. Tan, J. Mathew, A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Sig. Process. 62, 1–20 (2015)

    Google Scholar 

  5. Z. Li, Y. Jiang, X. Wang, Z. Peng, Multi-mode separation and nonlinear feature extraction of hybrid gear failures in coal cutters using adaptive non-stationary vibration analysis. Nonlinear Dyn. 84(1), 295–310 (2016)

    Google Scholar 

  6. H.N. Özgüven, D.R. Houser, Mathematical models used in gear dynamics—a review. J. Sound Vib. 121(3), 383–411 (1988)

    Google Scholar 

  7. A. Romero, Y. Lage, S. Soua, B. Wang, T.H. Gan, Vestas V90–3MW wind turbine gearbox health assessment using a vibration-based condition monitoring system. Shock Vib. (2016). https://doi.org/10.1155/2016/6423587

    Article  Google Scholar 

  8. M. Kubur, A. Kahraman, D.M. Zini, K. Kienzle, Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment. J. Vib. Acoust. 126(3), 398–406 (2004)

    Google Scholar 

  9. A.K. Jardine, D. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process. 20(7), 1483–1510 (2006)

    Google Scholar 

  10. W. Bartelmus, R. Zimroz, Gearbox Condition Monitoring Procedures In Advances in Condition Monitoring of Machinery in Non-Stationary Operations (Springer, Berlin, 2014).

    Google Scholar 

  11. Y. Lei, J. Lin, Z. He, M.J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Sig. Process. 35(1–2), 108–126 (2013)

    Google Scholar 

  12. J.P. Salameh, S. Cauet, E. Etien, A. Sakout, L. Rambault, Gearbox condition monitoring in wind turbines: A review. Mech. Syst. Sig. Process. 111, 251–264 (2018)

    Google Scholar 

  13. A. Parey, N. Tandon, Spur gear dynamic models including defects: a review. Shock Vib Dig. 35(6), 465–478 (2003)

    Google Scholar 

  14. J. Wang, R. Li, X. Peng, Survey of nonlinear vibration of gear transmission systems. Appl. Mech. Rev. 56(3), 309–329 (2003)

    Google Scholar 

  15. C.G. Cooley, R.G. Parker, A review of planetary and epicyclic gear dynamics and vibrations research. Appl. Mech. Rev. 66(4), 040804 (2014)

    Google Scholar 

  16. Y. Lei, J. Lin, M.J. Zuo, Z. He, Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement 48, 292–305 (2014)

    Google Scholar 

  17. F. Li, Y. Qin, L. Ge, Z. Pang, S. Liu, D. Lin, Influences of planetary gear parameters on the dynamic characteristics-a review. J. Vibroeng. 17(2), 574–586 (2015)

    Google Scholar 

  18. H. Ma, J. Zeng, R. Feng, X. Pang, Q. Wang, B. Wen, Review on dynamics of cracked gear systems. Eng. Fail. Anal. 55, 224–245 (2015)

    Google Scholar 

  19. X. Liang, M.J. Zuo, Z. Feng, Dynamic modeling of gearbox faults: a review. Mech. Syst. Sig. Process. 98, 852–876 (2018)

    Google Scholar 

  20. Z.K. Peng, F.L. Chu, Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst. Sig. Process. 18(2), 199–221 (2004)

    Google Scholar 

  21. P.D. Samuel, D.J. Pines, A review of vibration-based techniques for helicopter transmission diagnostics. J. Sound Vib. 282(1–2), 475–508 (2005)

    Google Scholar 

  22. J. Cibulka, M.K. Ebbesen, G. Hovland, K.G. Robbersmyr, M.R. Hansen, A review on approaches for condition based maintenance in applications with induction machines located offshore. Model. Identif control 33(2), 69 (2012)

    Google Scholar 

  23. V. Sharma, A. Parey, A review of gear fault diagnosis using various condition indicators. Procedia Eng. 144, 253–263 (2016)

    Google Scholar 

  24. D. Wang, K.L. Tsui, Q. Miao, Prognostics and health management: a review of vibration-based bearing and gear health indicators. IEEE Access 6, 665–676 (2018)

    Google Scholar 

  25. S. Das, G.P. Nason, Measuring the degree of non-stationarity of a time series. Stat 5(1), 295–305 (2016)

    MathSciNet  Google Scholar 

  26. K. Feng, K. Wang, M. Zhang, Q. Ni, M.J. Zuo, A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions. Meas. Sci. Technol. 28(3), 035003 (2017)

    Google Scholar 

  27. V. Sharma, A. Parey, Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed. Eng. Fail. Anal. 107, 104204 (2020)

    Google Scholar 

  28. V. Sharma, A. Parey, Case study on the effectiveness of gear fault diagnosis technique for gear tooth defects under fluctuating speed. IET Renew. Power Gener. 11(14), 1841–1849 (2017)

    Google Scholar 

  29. A. Parey, M. El Badaoui, F. Guillet, N. Tandon, Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. J. Sound Vib. 294(3), 547–561 (2006)

    Google Scholar 

  30. F. Chaari, T. Fakhfakh, M. Haddar, Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness. Eur. J. Mech.-A/Solids 28(3), 461–468 (2009)

    MATH  Google Scholar 

  31. S. Zhang, J. Tang, Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis. Mech. Syst. Sig. Process. 99, 711–729 (2018)

    Google Scholar 

  32. O.D. Mohammed, M. Rantatalo, J.O. Aidanpää, U. Kumar, Vibration signal analysis for gear fault diagnosis with various crack progression scenarios. Mech. Syst. Sig. Process. 41(1–2), 176–195 (2013)

    Google Scholar 

  33. Z. Wan, H. Cao, Y. Zi, W. He, Z. He, An improved time-varying mesh stiffness algorithm and dynamic modeling of gear-rotor system with tooth root crack. Eng. Fail. Anal. 42, 157–177 (2014)

    Google Scholar 

  34. P. Bajpai, A. Kahraman, N.E. Anderson, A surface wear prediction methodology for parallel-axis gear pairs. J. Tribol. 126(3), 597–605 (2004)

    Google Scholar 

  35. L. Walha, Y. Driss, T. Fakhfakh, M. Haddar, Effect of manufacturing defects on the dynamic behaviour for an helical two-stage gear system. Mech. Ind. 10(5), 365–376 (2009)

    Google Scholar 

  36. L. Walha, Y. Driss, M.T. Khabou, T. Fakhfakh, M. Haddar, Effects of eccentricity defect on the nonlinear dynamic behavior of the mechanism clutch-helical two stage gear. Mech. Mach. Theory 46(7), 986–997 (2011)

    MATH  Google Scholar 

  37. L. Zhu, R. Zhang, C. Zou, Research on vibration characteristics of gear-coupled multi-shaft rotor-bearing systems under the excitation of unbalance. J. Vibroeng. (2017). https://doi.org/10.21595/jve.2017.18141

    Article  Google Scholar 

  38. R. Hbaieb, F. Chaari, T. Fakhfakh, M. Haddar, Influence of eccentricity, profile error and tooth pitting on helical planetary gear vibration. Mach. Dyn. Prob. 29(3), 5–32 (2005)

    Google Scholar 

  39. H. Jiang, Y. Shao, C.K. Mechefske, Dynamic characteristics of helical gears under sliding friction with spalling defect. Eng. Fail. Anal. 39, 92–107 (2014)

    Google Scholar 

  40. H. Jiang, F. Liu, Dynamic features of three-dimensional helical gears under sliding friction with tooth breakage. Eng. Fail. Anal. 70, 305–322 (2016)

    Google Scholar 

  41. Q. Wang, Y. Zhang, A model for analyzing stiffness and stress in a helical gear pair with tooth profile errors. J. Vib. Control 23(2), 272–289 (2017)

    Google Scholar 

  42. M. Feng, H. Ma, Z. Li, Q. Wang, B. Wen, An improved analytical method for calculating time-varying mesh stiffness of helical gears. Meccanica 53(4–5), 1131–1145 (2018)

    Google Scholar 

  43. L. Han, H. Qi, Influences of tooth spalling or local breakage on time-varying mesh stiffness of helical gears. Eng. Fail. Anal. 79, 75–88 (2017)

    Google Scholar 

  44. Z. Wan, H. Cao, Y. Zi, W. He, Y. Chen, Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears. Mech. Mach. Theory 92, 447–463 (2015)

    Google Scholar 

  45. Z. Hu, J. Tang, J. Zhong, S. Chen, H. Yan, Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system. Mech. Syst. Sig. Process. 76, 294–318 (2016)

    Google Scholar 

  46. X. Liang, M.J. Zuo, M.R. Hoseini, Vibration signal modeling of a planetary gear set for tooth crack detection. Eng. Fail. Anal. 48, 185–200 (2015)

    Google Scholar 

  47. T. Geramitcioski, L. Trajcevski (2002). Theoretical improvement of the planetary gear dynamic model. In DS 30: Proceedings of DESIGN 2002, the 7th international design conference, Dubrovnik

  48. S.C. Huang, W. Soedel, Effects of coriolis acceleration on the free and forced in-plane vibrations of rotating rings on elastic foundation. J. Sound Vib. 115(2), 253–274 (1987)

    Google Scholar 

  49. C. Wang, Z. Shi, A dynamic calculation method of sliding friction losses for a helical gear pair. J. Braz. Soc. Mech. Sci. Eng. 39(5), 1521–1528 (2017)

    Google Scholar 

  50. A. Andersson, L. Vedmar, A dynamic model to determine vibrations in involute helical gears. J. Sound Vib. 260(2), 195–212 (2003)

    Google Scholar 

  51. Huang, Y. M., & Huang, K. Y. (2017). Analysis of gear dynamics of a helical gear pair with faults. InProceedings of 24th International Congress on Sound and Vibration. London

  52. X. Liu, Y. Yang, J. Zhang, Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear. Renew. Energy 122, 65–79 (2018)

    Google Scholar 

  53. Y. Pandya, A. Parey, Experimental investigation of spur gear tooth mesh stiffness in the presence of crack using photoelasticity technique. Eng. Fail. Anal. 34, 488–500 (2013)

    Google Scholar 

  54. N.K. Raghuwanshi, A. Parey, Mesh stiffness measurement of cracked spur gear by photoelasticity technique. Measurement 73, 439–452 (2015)

    Google Scholar 

  55. N.K. Raghuwanshi, A. Parey, Experimental measurement of gear mesh stiffness of cracked spur gear by strain gauge technique. Measurement 86, 266–275 (2016)

    Google Scholar 

  56. N.K. Raghuwanshi, A. Parey, Experimental measurement of spur gear mesh stiffness using digital image correlation technique. Measurement 111, 93–104 (2017)

    Google Scholar 

  57. N.K. Raghuwanshi, A. Parey, A new technique of gear mesh stiffness measurement using experimental modal analysis. J. Vib. Acoust. 10(1115/1), 4042100 (2019)

    Google Scholar 

  58. M. Amarnath, S. Chandramohan, S. Seetharaman, Experimental investigations of surface wear assessment of spur gear teeth. J. Vib. Control 18(7), 1009–1024 (2012)

    Google Scholar 

  59. M. Amarnath, C. Sujatha, S. Swarnamani, Experimental studies on the effects of reduction in gear tooth stiffness and lubricant film thickness in a spur geared system. Tribol. Int. 42(2), 340–352 (2009)

    Google Scholar 

  60. J. Park, J.M. Ha, H. Oh, B.D. Youn, S. Park, J.H. Choi (2015). Experimental approach for estimating mesh stiffness in faulty states of rotating gear. In Proc. Annu. Conf. Prognostics Health Manage. Soc (pp. 618–624)

  61. J. Li, X. Ai, Z. Tian, Measurement of gear tooth dynamic deformation using dynamic speckle photography. Chin. Sci. Bull. 43(6), 514–518 (1998)

    Google Scholar 

  62. S. Braun, The synchronous (time domain) average revisited. Mech. Syst. Sig. Process. 25(4), 1087–1102 (2011)

    Google Scholar 

  63. Y. Guo, L. Zhao, X. Wu, J. Na. Localized faults detection of planetary gear sets based on resonance demodulation and vibration separation. In 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE. (2018) (pp. 1–6)

  64. R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: a review with applications. Sig. Process. 96, 1–15 (2014)

    Google Scholar 

  65. D. Yu, Y. Yang, J. Cheng, Application of time–frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis. Measurement 40(9–10), 823–830 (2007)

    Google Scholar 

  66. J. Liang, J.H. Zhong, Z.X. Yang, Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery. Energies 10(10), 1652 (2017)

    Google Scholar 

  67. Z. X. Chen, H. T. Sun, S. K. Xie, in Applied Mechanics and Materials, vol. 299, (Trans Tech Publications Ltd, 2013), pp. 117–120

  68. W. Liu, B. Tang, A hybrid time-frequency method based on improved Morlet wavelet and auto terms window. Expert Syst. Appl. 38(6), 7575–7581 (2011)

    Google Scholar 

  69. B. Tang, W. Liu, T. Song, Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution. Renew. Energy 35(12), 2862–2866 (2010)

    Google Scholar 

  70. P.D. McFadden, J.D. Smith, Effect of transmission path on measured gear vibration. J. Vib. Acoust. Stress Reliab. Des. 108(3), 377–378 (1986)

    Google Scholar 

  71. W. Bartelmus, F. Chaari, R. Zimroz, M. Haddar, Modelling of gearbox dynamics under time-varying non-stationary load for distributed fault detection and diagnosis. Eur. J. Mech.-A/Solids 29(4), 637–646 (2010)

    Google Scholar 

  72. F. Chaari, M.S. Abbes, F.V. Rueda, A.F. del RINCON, M. Haddar, Analysis of planetary gear transmission in non-stationary operations. Front. Mech. Eng. 8(1), 88–94 (2013)

    Google Scholar 

  73. N. Bouchaala, F. Chaari, M.T. Khabou, T. Fakhfakh, M. Haddar, Influence of the non-linear Hertzian stiffness on the dynamics of a spur gear system under transient regime and tooth defects. Int. J. Veh. Noise Vib. 7(2), 149–177 (2011)

    Google Scholar 

  74. F. Viadero, A. Fernández, M. Iglesias, A. De-Juan, E. Liaño, M.A. Serna, Non-stationary dynamic analysis of a wind turbine power drivetrain: Offshore considerations. Appl. Acoust. 77, 204–211 (2014)

    Google Scholar 

  75. A. Hammami, A. Fernández, F. Chaari, F. Viadero, M. Haddar, Dynamic behaviour of two stages planetary gearbox in non-stationary operations. In Surveillance 7 conference, (Oct 2013)

  76. R. J. Drago. The effect of start-up load conditions on gearbox performance and life failure analysis, with supporting case study. In American gear manufacturers association fall technical meeting. (2009)

  77. A. Hammami, A.F. Del Rincon, F. Chaari, M.I. Santamaria, F.V. Rueda, M. Haddar, Effects of variable loading conditions on the dynamic behaviour of planetary gear with power recirculation. Measurement 94, 306–315 (2016)

    Google Scholar 

  78. A. Hammami, A.F. Del Rincon, F. Chaari, F.V. Rueda, M. Haddar, Dynamic behaviour of back to back planetary gear in run up and run down transient regimes. J. Mech. 31(4), 481–491 (2015)

    Google Scholar 

  79. P. Srikanth, A.S. Sekhar, Dynamic analysis of wind turbine drive train subjected to non-stationary wind load excitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(3), 429–446 (2015)

    Google Scholar 

  80. P. Srikanth, A.S. Sekhar, Wind turbine drive train dynamic characterization using vibration and torque signals. Mech. Mach. Theory 98, 2–20 (2016)

    Google Scholar 

  81. I.B. Mabrouk, A. El Hami, L. Walha, B. Zghal, M. Haddar, Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine. Mech. Syst. Sig. Process. 85, 396–414 (2017)

    Google Scholar 

  82. F. Liu, L. Zhang, H. Jiang, X. Yu, Simulation of vibro-impact gear model considering the lubricant influence with a new computational algorithm. J. Braz. Soc. Mech. Sci. Eng. 40(3), 147 (2018)

    Google Scholar 

  83. Y. Fang, X. Liang, M. J. Zuo, Effect of sliding friction on transient characteristics of a gear transmission under random loading. In Systems, Man, and Cybernetics (SMC), IEEE International Conference on (pp. 2551–2555) (2017)

  84. H. Chen, X. Wang, H. Gao, F. Yan, Dynamic characteristics of wind turbine gear transmission system with random wind and the effect of random backlash on system stability. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(14), 2590–2597 (2017)

    Google Scholar 

  85. Z. M. Xiao, L. R. Huan, Dynamic analysis of planetary gears with gear crack of semi-direct drive wind turbine. In Applied System Innovation (ICASI), 2017 International Conference on (pp. 221–223) (2017)

  86. C. Liu, D. Qin, Y. Liao, Dynamic modeling and analysis of high-speed planetary gear including centrifugal force. J. Braz. Soc. Mech. Sci. Eng. 39(10), 3769–3778 (2017)

    Google Scholar 

  87. J. Wei, P. Bai, D. Qin, T.C. Lim, P. Yang, H. Zhang, Study on vibration characteristics of fan shaft of geared turbofan engine with sudden imbalance caused by blade off. J. Vib. Acoust. 140(4), 041010 (2018)

    Google Scholar 

  88. K.F. Brethee, D. Zhen, F. Gu, A.D. Ball, Helical gear wear monitoring: Modelling and experimental validation. Mech. Mach. Theory 117, 210–229 (2017)

    Google Scholar 

  89. Y. Lei, Z. Liu, J. Lin, F. Lu, Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes. J. Sound Vib. 369, 266–281 (2016)

    Google Scholar 

  90. L. Liu, X. Liang, M.J. Zuo, Vibration signal modeling of a planetary gear set with transmission path effect analysis. Measurement 85, 20–31 (2016)

    Google Scholar 

  91. W. Huang, H. Sun, H. Dou, W. Wang, Study of transmission path of wind turbine gearbox fault vibration signal based on power flow finite element method. Adv. Mech. Eng. 9(5), 1687814017703899 (2017)

    Google Scholar 

  92. F. Vanhollebeke, J. Peeters, D. Vandepitte, W. Desmet, Using transmission path analysis to assess the influence of bearings on structural vibrations of a wind turbine gearbox. Wind Energy 18(5), 797–810 (2015)

    Google Scholar 

  93. J. Luo, D. Yu, M. Liang, Gear fault detection under time-varying rotating speed via joint application of multiscale chirplet path pursuit and multiscale morphology analysis. Struct. Health Monit. 11(5), 526–537 (2012)

    Google Scholar 

  94. T. Heyns, P.S. Heyns, J.P. De Villiers, Combining synchronous averaging with a Gaussian mixture model novelty detection scheme for vibration-based condition monitoring of a gearbox. Mech. Syst. Sig. Process. 32, 200–215 (2012)

    Google Scholar 

  95. Y. Shao, D. Su, A. Al-Habaibeh, W. Yu, A new fault diagnosis algorithm for helical gears rotating at low speed using an optical encoder. Measurement 93, 449–459 (2016)

    Google Scholar 

  96. M.A. Jafarizadeh, R. Hassannejad, M.M. Ettefagh, S. Chitsaz, Asynchronous input gear damage diagnosis using time averaging and wavelet filtering. Mech. Syst. Sig. Process. 22(1), 172–201 (2008)

    Google Scholar 

  97. F. Bonnardot, M. El Badaoui, R.B. Randall, J. Daniere, F. Guillet, Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation). Mech. Syst. Sig. Process. 19(4), 766–785 (2005)

    Google Scholar 

  98. N. Ahamed, Y. Pandya, A. Parey, Spur gear tooth root crack detection using time synchronous averaging under fluctuating speed. Measurement 52, 1–11 (2014)

    Google Scholar 

  99. V. Sharma, A. Parey, Gear crack detection using modified TSA and proposed fault indicators for fluctuating speed conditions. Measurement 90, 560–575 (2016)

    Google Scholar 

  100. H. Xiao, X. Zhou, Y. Shao, Application of an improved dynamic time synchronous averaging method for fault diagnosis in conditions of speed fluctuation and no tachometer. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(14), 2517–2531 (2016)

    Google Scholar 

  101. M. Zhao, X. Jia, J. Lin, Y. Lei, J. Lee, Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox. Mech. Syst. Signal Process. 98, 16–31 (2018)

    Google Scholar 

  102. Y. Guo, X. Wu, J. Na, R.F. Fung, Envelope synchronous average scheme for multi-axis gear faults detection. J. Sound Vib. 365, 276–286 (2016)

    Google Scholar 

  103. J. Wang, F. Cheng, W. Qiao, L. Qu, Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions. IEEE Trans. Industr. Electron. 65(5), 4268–4278 (2017)

  104. Z. Feng, S. Qin, M. Liang, Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under non-stationary conditions. Renew. Energy 85, 45–56 (2016)

    Google Scholar 

  105. Z. Feng, W. Zhu, D. Zhang, Time-Frequency demodulation analysis via Vold-Kalman filter for wind turbine planetary gearbox fault diagnosis under nonstationary speeds. Mech. Syst. Signal Process. 128, 93–109 (2019)

    Google Scholar 

  106. S. Tian, Z. Qian, Planetary gearbox fault feature enhancement based on combined adaptive filter method. Adv. Mech. Eng. 7(12), 1687814015620325 (2015)

    Google Scholar 

  107. J. Mei, J. Jia, R. Zeng, B. Zhou, H. Zhao, A multi-order FRFT self-adaptive filter based on segmental frequency fitting and early fault diagnosis in gears. Measurement 91, 532–540 (2016)

    Google Scholar 

  108. H. Li, J. Zhao, X. Zhang, X. Ni, A New Fault Diagnosis Method for Planetary Gearbox. Int. J. Perform. Eng. 12(4), 389–394 (2016)

    Google Scholar 

  109. Y. Li, G. Li, Y. Yang, X. Liang, M. Xu, A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy. Mech. Syst. Signal Process. 105, 319–337 (2018)

    Google Scholar 

  110. D. Zhang, D. Yu, Multi-fault diagnosis of gearbox based on resonance-based signal sparse decomposition and comb filter. Measurement 103, 361–369 (2017)

    Google Scholar 

  111. J.M. Ha, J. Park, H. Oh, B.D. Youn, A Vibration-based Fault Diagnostics Technique for the Planetary Gearbox of Wind Turbines Considering Characteristics of Vibration Modulation. Trans. Korean Soc. Mech. Eng. A 39(7), 665–671 (2015)

    Google Scholar 

  112. G. He, K. Ding, W. Li, X. Jiao, A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique. Renew. Energy 87, 364–375 (2016)

    Google Scholar 

  113. G. Dong, J. Chen, Y. Ming, Feature extraction based on cyclic adaptive filter for gearbox fault diagnosis. In 9th WCEAM Research Papers (pp. 175–187). Springer, Cham. (2015)

  114. R. B. Randall, W. A. Smith, (2016). New cepstral methods for the diagnosis of gear and bearing faults under variable speed conditions. In ICSV23 conference, Athens

  115. X. Wan, D. Wang, W.T. Peter, G. Xu, Q. Zhang, A critical study of different dimensionality reduction methods for gear crack degradation assessment under different operating conditions. Measurement 78, 138–150 (2016)

    Google Scholar 

  116. Y. Hu, X. Tu, F. Li, G. Meng, Joint high-order synchrosqueezing transform and multi-taper empirical wavelet transform for fault diagnosis of wind turbine planetary gearbox under non-stationary conditions. Sensors 18(1), 150 (2018)

    Google Scholar 

  117. X. Chen, Z. Feng, Iterative generalized time–frequency reassignment for planetary gearbox fault diagnosis under non-stationary conditions. Mech. Syst. Sig. Process. 80, 429–444 (2016)

    Google Scholar 

  118. W. He, Y. Zi, B. Chen, S. Wang, Z. He, Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis. Sci. China Technol. Sci. 56(8), 1956–1965 (2013)

    Google Scholar 

  119. C. Zhang, B. Li, B. Chen, H. Cao, Y. Zi, Z. He, Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform. Mech. Syst. Signal Process. 64, 162–187 (2015)

    Google Scholar 

  120. C. Yi, Y. Lv, H. Xiao, T. Huang, G. You, Multisensor signal denoising based on matching synchrosqueezing wavelet transform for mechanical fault condition assessment. Measurement Sci. Technol. 29(4), 045140 (2018)

    Google Scholar 

  121. J. Wang, F. Cheng, W. Qiao, L. Qu, Multiscale filtering reconstruction for wind turbine gearbox fault diagnosis under varying-speed and noisy conditions. IEEE Trans. Industr. Electron. 65(5), 4268–4278 (2018)

    Google Scholar 

  122. X. Chen, Z. Feng, Time-frequency analysis of torsional vibration signals in resonance region for planetary gearbox fault diagnosis under variable speed conditions. IEEE Access 5, 21918–21926 (2017)

    Google Scholar 

  123. J.P. Salameh, S. Cauet, E. Etien, A. Sakout, L. Rambault, A new modified sliding window empirical mode decomposition technique for signal carrier and harmonic separation in non-stationary signals: Application to wind turbines. ISA Trans. 89, 20–30 (2019)

    Google Scholar 

  124. R.U. Maheswari, R. Umamaheswari, Fault diagnostics of wind turbine drive-train using multivariate signal processing. Int. J. Acoust. Vib. 24(2), 334–342 (2019)

    Google Scholar 

  125. S. Gao, B. Wang, F. Liu An Improved Time-Frequency Analysis Method Based on the Energy Gridding for Offshore Wind Turbines. In The 29th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers. (2019)

  126. J. Si, Y. Cao, X. Shi, Fault diagnosis of wind turbine planetary gearbox based on hht and structure resonance demodulation. Mechatronic Syst. Control 47(1), 36–42 (2019)

    Google Scholar 

  127. Y. Qian, R. Yan, Gearbox fault diagnosis in a wind turbine using single sensor based blind source separation. J. Sens. (2016). https://doi.org/10.1155/2016/6971952

    Article  Google Scholar 

  128. W. Yang, R. Court, P.J. Tavner, C.J. Crabtree, Bivariate empirical mode decomposition and its contribution to wind turbine condition monitoring. J. Sound Vib. 330(15), 3766–3782 (2011)

    Google Scholar 

  129. V. Sharma, A. Parey, Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions. Mech. Syst. Signal Process. 85, 278–295 (2017)

    Google Scholar 

  130. X. Zheng, S. Wang, Y. Qian, Fault feature extraction of wind turbine gearbox under variable speed based on improved adaptive variational mode decomposition. Proc. Inst. Mech. Eng. Part A J. Power Energy, 234(6), 848–861 (2019)

  131. Z. Feng, D. Zhang, M.J. Zuo, Planetary gearbox fault diagnosis via joint amplitude and frequency demodulation analysis based on variational mode decomposition. Appl. Sci. 7(8), 775 (2017)

    Google Scholar 

  132. V. Sharma, Gear fault detection based on instantaneous frequency estimation using variational mode decomposition and permutation entropy under real speed scenarios. Wind Energy (2020). https://doi.org/10.1002/we.2570

    Article  Google Scholar 

  133. F. Li, R. Li, L. Tian, L. Chen, J. Liu, Data-driven time-frequency analysis method based on variational mode decomposition and its application to gear fault diagnosis in variable working conditions. Mech. Syst. Signal Process. 116, 462–479 (2019)

    Google Scholar 

  134. H. Mahgoun, F. Chaari, A. Felkaoui, Detection of gear faults in variable rotating speed using variational mode decomposition (VMD). Mech. Ind. 17(2), 207 (2016)

    Google Scholar 

  135. Y. Li, K. Feng, X. Liang, M. J. Zuo, A fault diagnosis method for planetary gearboxes under non-stationary working conditions using improved Vold-Kalman filter and multi-scale sample entropy. J. Sound Vib. 439, 271–286 (2019)

  136. Y. Lei, M.J. Zuo, Z. He, Y. Zi, A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 37(2), 1419–1430 (2010)

    Google Scholar 

  137. K. Feng, K. Wang, Q. Ni, M.J. Zuo, D. Wei, A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions. J. Sound Vib. 408, 190–209 (2017)

    Google Scholar 

  138. V. Sharma, A. Parey, Gearbox fault diagnosis using RMS based probability density function and entropy measures for fluctuating speed conditions. Struct. Health Monit. 16(6), 682–695 (2017)

    Google Scholar 

  139. G. Cheng, X. Chen, H. Li, P. Li, H. Liu, Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition. Measurement 91, 140–154 (2016)

    Google Scholar 

  140. H.H. Bafroui, A. Ohadi, Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions. Neurocomputing 133, 437–445 (2014)

    Google Scholar 

  141. P. Boškoski, Đ Juričić, Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures. Mech. Syst. Signal Process. 31, 369–381 (2012)

    Google Scholar 

  142. J. Antoni, Cyclostationarity by examples. Mech. Syst. Sig. Process. 23(4), 987–1036 (2009)

    Google Scholar 

  143. D. Abboud, S. Baudin, J. Antoni, D. Rémond, M. Eltabach, O. Sauvage, The spectral analysis of cyclo-non-stationary signals. Mech. Syst. Signal Process. 75, 280–300 (2016)

    Google Scholar 

  144. D. Abboud, M. Elbadaoui, S. Becquerelle, M. Lalmi, The application of the cyclic coherence for distributed planet fault detection in planetary gears. In WCCM 2017—1st World Congress on Condition Monitoring (2017)

  145. D. Abboud, J. Antoni, S. Sieg-Zieba, M. Eltabach, Deterministic-random separation in non-stationary regime. J. Sound Vib. 362, 305–326 (2016)

    Google Scholar 

  146. S. Delvecchio, J. Antoni, Extraction of angle deterministic signals in the presence of stationary speed fluctuations with cyclostationary blind source separation. Mech. Syst. Signal Process. 27, 350–361 (2012)

    Google Scholar 

  147. T. Kebabsa, N. Ouelaa, J. Antoni, M.C. Djamaa, R. Khettabi, A. Djebala, Fault Diagnosis Through the Application of Cyclostationarity to Signals Measured. . In Applied Mechanics, Behavior of Materials, and Engineering Systems (Springer, Cham, 2017).

    Google Scholar 

  148. J. Dawei, Z. Jianxin, H. Xin, Y. Xiuli, Cyclic autocorrelation function for gear box fault diagnosis. In Intel. Syst. Design Eng. Appl. (ISDEA), 2015 Sixth International Conference on (pp. 256–259). IEEE. (2015)

  149. V. Sharma, A. Parey, Use of Cyclostationarity Based Condition Indicators for Gear Fault Diagnosis Under Fluctuating Speed Condition. In Cyclostationarity: Theory and Methods III (Springer, Cham, 2017).

    Google Scholar 

  150. Z.K. Zhu, Z.H. Feng, F.R. Kong, Cyclostationarity analysis for gearbox condition monitoring: approaches and effectiveness. Mech. Syst. Signal Process. 19(3), 467–482 (2005)

    Google Scholar 

  151. J.S. Kim, S.K. Lee, Identification of tooth fault in a gearbox based on cyclostationarity and empirical mode decomposition. Struct. Health Monit. 17(3), 494–513 (2018)

    MathSciNet  Google Scholar 

  152. F. Léonard, Time domain cyclostationarity signal-processing tools. Mech. Syst. Signal Process. 62, 100–112 (2015)

    Google Scholar 

  153. S. Baudin, D. Rémond, J. Antoni, O. Sauvage, Non-intrusive rattle noise detection in non-stationary conditions by an angle/time cyclostationary approach. J. Sound Vib. 366, 501–513 (2016)

    Google Scholar 

  154. G. Xin, N. Hamzaoui, J. Antoni, Extraction of second-order cyclostationary sources by matching instantaneous power spectrum with stochastic model–application to wind turbine gearbox. Renew. Energy 147, 1739–1758 (2020)

    Google Scholar 

  155. C. Peeters, P. Guillaume, J. Helsen, Vibration-based bearing fault detection for operations and maintenance cost reduction in wind energy. Renew. Energy 116, 74–87 (2018)

    Google Scholar 

  156. A. Mauricio, J. Qi, K. Gryllias, Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis. J. Eng. Gas Turbines Power 10(1115/1), 4041114 (2019)

    Google Scholar 

  157. A. Mauricio, J. Qi, W. Smith, R. Randall, K. Gryllias, Vibration-based Condition Monitoring of Planetary Gearboxes Operating Under Speed Varying Operating Conditions Based on Cyclo-nonstationary Analysis. In International Conference on Rotor Dynamics. Springer, Cham. (2018)

  158. K. Zhang, X. Chen, L. Liao, M. Tang, J. Wu, A new rotating machinery fault diagnosis method based on local oscillatory-characteristic decomposition. Digital Signal Process. 78, 98–107 (2018)

    Google Scholar 

  159. Y. Wang, Z. He, J. Xiang, Y. Zi, Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox. Mech. Mach. Theory 47, 62–73 (2012)

    Google Scholar 

  160. X. Shuiqing, Z. Ke, C. Yi, H. Yigang, F. Li, Gear fault diagnosis in variable speed condition based on multiscale chirplet path pursuit and linear canonical transform. Complexity (2018). https://doi.org/10.1155/2018/3904598

    Article  Google Scholar 

  161. X. Jiang, S. Li, A dual path optimization ridge estimation method for condition monitoring of planetary gearbox under varying-speed operation. Measurement 94, 630–644 (2016)

    Google Scholar 

  162. J. Cai, X. Li, Gear fault diagnosis based on time–frequency domain de-noising using the generalized S transform. J. Vib. Control 24(15), 3338–3347 (2018)

    MathSciNet  Google Scholar 

  163. S. Xue, I. Howard, Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection. Mech. Syst. Signal Process. 100, 706–728 (2018)

    Google Scholar 

  164. K. Li, Z. Feng, X. Liang, Planetary gearbox fault diagnosis via torsional vibration signal analysis in resonance region. Shock Vib. (2017). https://doi.org/10.1155/2017/6565237

    Article  Google Scholar 

  165. Z. Wang, Y. Guo, X. Wu, Feature extraction of faulty sun gear signals based on the envelope windowed synchronous average in angle domain. J. Vib. Shock 36(21), 60–71 (2017)

    Google Scholar 

  166. Z. Feng, M.J. Zuo, J. Qu, T. Tian, Z. Liu, Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes. Mech. Syst. Signal Process. 40(1), 56–75 (2013)

    Google Scholar 

  167. J. Obuchowski, R. Zimroz, A. Wyłomańska, Blind equalization using combined skewness–kurtosis criterion for gearbox vibration enhancement. Measurement 88, 34–44 (2016)

    Google Scholar 

  168. O. Graja, B. Zghal, K. Dziedziech, F. Chaari, A. Jablonski, T. Barszcz, M. Haddar, New Modeling of Planetary Gear Transmission. In International Conference Design and Modeling of Mechanical Systems (pp. 1227–1233). Springer, Cham. (2017)

  169. L. Chao, C. Lu, J. Ma, An approach to fault diagnosis for gearbox based on reconstructed energy and support vector machine. Vibroeng. PROCEDIA 14, 136–140 (2017)

    Google Scholar 

  170. P. Borghesani, P. Pennacchi, R.B. Randall, R. Ricci, Order tracking for discrete-random separation in variable speed conditions. Mech. Syst. Signal Process. 30, 1–22 (2012)

    Google Scholar 

  171. C.J. Stander, P.S. Heyns, Transmission path phase compensation for gear monitoring under fluctuating load conditions. Mech. Syst. Signal Process. 20(7), 1511–1522 (2006)

    Google Scholar 

  172. G. Cheng, X.H. Chen, X.L. Shan, H.G. Liu, C.F. Zhou, A new method of gear fault diagnosis in strong noise based on multi-sensor information fusion. J. Vib. Control 22(6), 1504–1515 (2016)

    Google Scholar 

  173. S. Ning, Z. Han, Z. Wang, X. Wu, A novel fault diagnosis approach of gearbox using an embedded sensor fixed gear body. J. Vibroeng. 18(7), 4438–4400 (2016)

    Google Scholar 

  174. Y. Lei, J. Lin, Z. He, D. Kong, A method based on multi-sensor data fusion for fault detection of planetary gearboxes. Sensors 12(2), 2005–2017 (2012)

    Google Scholar 

  175. J. Chen, Y. Li, F. Ye, Uncertain information fusion for gearbox fault diagnosis based on BP neural network and DS evidence theory. In Intelligent Control and Automation (WCICA), 2016 12th World Congress on (pp. 1372–1376) (2016)

  176. Z. Liu, W. Guo, Z. Tang, Y. Chen, Multi-sensor data fusion using a relevance vector machine based on an ant colony for gearbox fault detection. Sensors 15(9), 21857–21875 (2015)

    Google Scholar 

  177. D. Looney, A. Hemakom, D.P. Mandic, Intrinsic multi-scale analysis: a multi-variate empirical mode decomposition framework. Proc. R. Soc. A 471(2173), 20140709 (2015)

    MathSciNet  MATH  Google Scholar 

  178. X. Gong, L. Ding, W. Du, H. Wang, Gear fault diagnosis using dual channel data fusion and EEMD method. Procedia engineering 174, 918–926 (2017)

    Google Scholar 

  179. L.L. Jiang, H.K. Yin, X.J. Li, S.W. Tang, Fault diagnosis of rotating machinery based on multisensor information fusion using SVM and time-domain features. Shock Vib. (2014). https://doi.org/10.1155/2014/418178

    Article  Google Scholar 

  180. Z. Li, X. Yan, X. Wang, Z. Peng, Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors. J. Sound Vib. 371, 406–433 (2016)

    Google Scholar 

  181. H. Alkhadafe, A. Al-Habaibeh, A. Lotfi, Condition monitoring of helical gears using automated selection of features and sensors. Measurement 93, 164–177 (2016)

    Google Scholar 

  182. L. Jing, T. Wang, M. Zhao, P. Wang, An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox. Sensors 17(2), 414 (2017)

    Google Scholar 

  183. X. Sun, D. Xue, R. Li, X. Li, L. Cui, X. Zhang, W. Wu, Research on condition monitoring of key components in wind turbine based on cointegration analysis. IOP Conf. Series Mater. Sci. Eng. 575(1), 012015 (2019)

    Google Scholar 

  184. M. Salvetti, C. Sbarufatti, E. Cross, M. Corbetta, K. Worden, M. Giglio, On the performance of a cointegration-based approach for novelty detection in realistic fatigue crack growth scenarios. Mech. Syst. Signal Process. 123, 84–101 (2019)

    Google Scholar 

  185. I. Antoniadou, E. J. Cross, K. Worden, Cointegration for the removal of environmental and operational effects using a single sensor. Structural Health Monitoring (2013)

  186. A.A. Tabrizi, H. Al-Bugharbee, I. Trendafilova, L. Garib+aldi, A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions. Meccanica 52(4–5), 1201–1217 (2017)

    Google Scholar 

  187. Y. Hu, C. Zhao, Fault diagnosis with dual cointegration analysis of common and specific nonstationary fault variations. IEEE Trans. Autom. Sci. Eng. 17(1), 237–247 (2019)

    Google Scholar 

  188. A. Michalak, J. Wodecki, A. Wyłomańska, R. Zimroz, Application of cointegration to vibration signal for local damage detection in gearboxes. Appl. Acoust. 144, 4–10 (2019)

    Google Scholar 

  189. H. Zhao, H. Liu, H. Ren, H. Liu The condition monitoring of wind turbine gearbox based on cointegration. In 2016 IEEE International Conference on Power System Technology (POWERCON) (pp. 1–6) (2016)

  190. A. Michalak, J. Wodecki, A. Wyłomańska, R. Zimroz, Influence of Signal to Noise Ratio on the Effectiveness of Cointegration Analysis for Vibration Signal in Workshop on Cyclostationary Systems and Their Applications (Springer, Cham, 2017).

    Google Scholar 

  191. P.B. Dao, W.J. Staszewski, T. Barszcz, T. Uhl, Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data. Renew. Energy 116, 107–122 (2018)

    Google Scholar 

  192. F. Cheng, J. Wang, L. Qu, W. Qiao, Rotor current-based fault diagnosis for dfig wind turbine drivetrain gearboxes using frequency analysis and a deep classifier. IEEE Trans. Ind. Appl. (2017). https://doi.org/10.1109/TIA.2016.2628362

    Article  Google Scholar 

  193. S. Liu, Y. Liu, B. Wang, An improved hyper-sphere support vector machine. In Natural Computation, 2007. ICNC 2007. Third International Conference on 1 497–500. (2007)

  194. Y. Li, Y. Yang, G. Li, M. Xu, W. Huang, A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection. Mech. Syst. Signal Process. 91, 295–312 (2017)

    Google Scholar 

  195. Y. Xiao, Y. Wang, H. Mu, N. Kang, Research on misalignment fault isolation of wind turbines based on the mixed-domain features. Algorithms 10(2), 67 (2017)

    MathSciNet  MATH  Google Scholar 

  196. S. Tyagi, S.K. Panigrahi, An SVM-ANN Hybrid Classifier for Diagnosis of Gear Fault. Appl. Artificial Intell. 31(3), 209–231 (2017)

    Google Scholar 

  197. Z. Xing, J. Qu, Y. Chai, Q. Tang, Y. Zhou, Gear fault diagnosis under variable conditions with intrinsic time-scale decomposition-singular value decomposition and support vector machine. J. Mech. Sci. Technol. 31(2), 545–553 (2017)

    Google Scholar 

  198. H. Li, Y. Zhang, H. Zheng, Gear fault detection and diagnosis under speed-up condition based on order cepstrum and radial basis function neural network. J. Mech. Sci. Technol. 23(10), 2780–2789 (2009)

    Google Scholar 

  199. Y.Liao, X. Zeng, W. Li, Wavelet transform based convolutional neural network for gearbox fault classification. In Prognostics and System Health Management Conference (PHM-Harbin) (pp. 1–6) (2017)

  200. J. Yu, M. Bai, G. Wang, X. Shi, Fault diagnosis of planetary gearbox with incomplete information using assignment reduction and flexible naive Bayesian classifier. J. Mech. Sci. Technol. 32(1), 37–47 (2018)

    Google Scholar 

  201. M. Cerrada, C. Li, R.V. Sánchez, F. Pacheco, D. Cabrera, J.V. de Oliveira, A fuzzy transition based approach for fault severity prediction in helical gearboxes. Fuzzy Sets Syst. 337, 52–73 (2016)

    MathSciNet  Google Scholar 

  202. S.H. Yuan, H.L. Dong, X.Y. Li, Analysis of lubricating performance for involute gear based on dynamic loading theory. J. Mech. Des. 134(12), 121004 (2012)

    Google Scholar 

  203. F.H. Liu, S. Theodossiades, L.A. Bergman, A.F. Vakakis, D.M. McFarland, Analytical characterization of damping in gear teeth dynamics under hydrodynamic conditions. Mech. Mach. Theory 94, 141–147 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V. A Review on Vibration-Based Fault Diagnosis Techniques for Wind Turbine Gearboxes Operating Under Nonstationary Conditions. J. Inst. Eng. India Ser. C 102, 507–523 (2021). https://doi.org/10.1007/s40032-021-00666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00666-y

Keywords